MindData - Data Pre-proc

LM]S

MindSpore

Eric Zhang

The Al (Data)
Problem

Training too

Typical training process slow

N
k label: cat
. ‘ Inference
Training Dataset
| Dataset a

1. You take some data

2. Feed it to a model

3. Training adjusts the model
4. You end up with a model

Accuracy too
_ low

You would have to continuously
send data through the training
process to get good training
accuracy. Trained

Training Train a model—> Model
Training is computation intense
Training can take a long time @ API too

complicated

There are other pain points and -
. Validation results
challenges that aren't mentioned

ST Not a cat!

Training can be very slow - Research today explores
various ways of accelerating this process

Why is training slow?
-> Training happens over many epochs, one epoch
represents traversal over the entire dataset
-> Data processing operators are computation
intensive (image decoding and Gaussian
calculations)
-> Model will have to be updated with results
periodically, causing communication overhead

1. Hardware acceleration
2. Computation graph optimization
3. Minimize inter-device communication

Training too

Typical training process slow

N
k label: cat
. ‘ Inference
Training Dataset
| Dataset a

1. You take some data

2. Feed it to a model

3. Training adjusts the model
4. You end up with a model

Accuracy too
_ low

You would have to continuously
send data through the training
process to get good training
accuracy. Trained

Training Train a model—> Model
Training is computation intense
Training can take a long time @ API too

complicated

There are other pain points and -
. Validation results
challenges that aren't mentioned

ST Not a cat!

Insufficient accuracy

Machine learning is an area where we still don't fully
understand

-> We don't know exactly what the machine is picking
up, it could be picking out other details (edge artifacts
for example)

-> As such the data goes through a series of
transformations to allow machines to pick up the key
features more easily (crop, re-size, normalize)

-> When tracking down the root reason of lost
accuracy the list is endless

- bad interpolation mode (image pre-processing)
- bad model
- not enough epochs or bad training data set

Training too

Typical training process slow

N
k label: cat
. ‘ Inference
Training Dataset
| Dataset a

1. You take some data

2. Feed it to a model

3. Training adjusts the model
4. You end up with a model

Accuracy too
_ low

You would have to continuously
send data through the training
process to get good training
accuracy. Trained

Training Train a model—> Model
Training is computation intense
Training can take a long time @ API too

complicated

There are other pain points and -
. Validation results
challenges that aren't mentioned

ST Not a cat!

APl is too complicated...

There are many operators in the wild and many
implementations. How many details does the user
really need to control?

-> Users of machine learning comes from all sorts of
backgrounds

-> Most of the time we don't want to give the user too
many options even though we need different options
for different work loads

MyResize(interpolation,
is_sparse,
preserve_ratio,

include_bounding_box,
fill_value,
is_ random)

Training too

Typical training process slow

N
k label: cat
. ‘ Inference
Training Dataset
| Dataset a

1. You take some data

2. Feed it to a model

3. Training adjusts the model
4. You end up with a model

Accuracy too
_ low

You would have to continuously
send data through the training
process to get good training
accuracy. Trained

Training Train a model—> Model
Training is computation intense
Training can take a long time @ API too

complicated

There are other pain points and -
. Validation results
challenges that aren't mentioned

ST Not a cat!

MindData - Data Pre-proc

LM]S

MindSpore

Eric Zhang

The Al (Data)
Problem

MindSpore Deep Learning Framework

MindSpore FrontEnd Expression
Python API Training/Inference/Export Data Processing
MindSpore IR

Auto Parallel

MindSpore Graph Engine (Ascend/GPU/CPU Support)

GLLO Low Level Optimization Pipeline Parallel

Graph Execution On-Device Execution Distributed Libs (Comms/PS)

MindSpore Backend Runtime (Cloud/Edge/Mobile)

\\ y
’ Ascend 310 Ascend 910 Android/iOS ‘

Two
execution
graphs

Sending data
to different
devices

Sharing
dependencies

10.

Within MindSpore

If we look at a sample training script we can break it

down to data graph and training graph. N | API/IR/RT
Image Folder Datad
The data graph can execute |

independently of the training graph.

Decode, Resize, Crop.

Map Normalize Data3
As such we are able to define two |
graphs, one for data pre-processing
and one for training/inference. Batch Data2
MindData handles the building,
optimization, and execution of the @
data graph.

Synchronous
processing
TrainOp1 —» Train Op2
9 After Data 1 is consumed
J' 12 the model is updated
then Data 2 is consumed

Train Op4 |[«—— Train Op3

Computation
Graph

The different between API, IR and

lambda (x, y)
leta=x-1in
letb=a+yin

Runtime

ef func(x, y):
return x / y

@ms_function
ef test_f(x, y):

d
: a=x-1

* b=a+y
c = b * func(a, b)
return c

API

Taking a piece of user code and
interpreting it as an executable graph
can be very complicated, even more
complicated when adding
optimizations. API level logic is parsed
into intermediate representation(IR).
IR is then optimized before being
executed at run-time (RT).

let func = lambda (x, y)

letret=x/yin
ret end in

let %1 = func(a, b) in

letc=b * %1in

c end

IR

Tensor X

I

Tensor Y

e

Tensor Operations I:\,>

at run time the data actually
gets computed, the data
exists in the form of tensors

Result Tensor

Runtime

12.

Within MindSpore

If we look at a sample training script we can break it

down to data graph and training graph. N | API/IR/RT
Image Folder Datad
The data graph can execute |

independently of the training graph.

Decode, Resize, Crop.

Map Normalize Data3
As such we are able to define two |
graphs, one for data pre-processing
and one for training/inference. Batch Data2
MindData handles the building,
optimization, and execution of the @
data graph.

Synchronous
processing
TrainOp1 —» Train Op2
9 After Data 1 is consumed
J' 12 the model is updated
then Data 2 is consumed

Train Op4 |[«—— Train Op3

Computation
Graph

MindSpore Deep Learning Framework

MindSpore FrontEnd Expression
Python API Training/Inference/Export Data Processing
MindSpore IR

Auto Parallel

MindSpore Graph Engine (Ascend/GPU/CPU Support)

GLLO Low Level Optimization Pipeline Parallel

Graph Execution On-Device Execution Distributed Libs (Comms/PS)

MindSpore Backend Runtime (Cloud/Edge/Mobile)

\\ y
’ Ascend 310 Ascend 910 Android/iOS ‘

Two
execution
graphs

Sending data
to different
devices

Sharing
dependencies

14.

Sending data to various devices

MindData has to send data to various edge devices
after the data pre-processing process

For GPU and Ascend, we use something called a
device queue - a tunnel which copies the data from
host memory to edge device.

For CPU, data is passed directly from memory.

For Android, data is passed from memory*

MindData Data

Data

Generation

MindSpore
Backend
Training Layer

Data

MindSpore Deep Learning Framework

MindSpore FrontEnd Expression
Python API Training/Inference/Export Data Processing
MindSpore IR

Auto Parallel

MindSpore Graph Engine (Ascend/GPU/CPU Support)

GLLO Low Level Optimization Pipeline Parallel

Graph Execution On-Device Execution Distributed Libs (Comms/PS)

MindSpore Backend Runtime (Cloud/Edge/Mobile)

\\ y
’ Ascend 310 Ascend 910 Android/iOS ‘

Two
execution
graphs

Sending data
to different
devices

Sharing
dependencies

16.

The data graph and training graph need to

share dependencies

A less discussed portion of the code is
sharing dependencies within the same
project

An interesting constraint to the design

of the data graph is that we have to share
the many definitions and resources
between the two different run-times.

The golden rule here to to define
ownership of all the shared components
to avoid any contention/race conditions.

As such, there is one main process
owned by MindSpore, all resource
deallocation is handled by the owner of
the resource.

Python Main Process

import mindspore.nn as nn

import IEII'IJdSDQEE dataset as de

from mindspore import Tensor, contex

from mindspore.context import ParallelMode

from mindspore.nn.optim import Momentum

from mindspore.train.callback import ModelCheckpoi

from mindspore.train.callback import CheckpointConfig, Callback

from mindspore.train.model import Model

from mindspore.common import set_seed

Tensor
Definition

‘ MindData.so F_'-_"_
Logging

™~ Python Interpreter |

from mindspore.communication.management import init, get_rank, get_group_size

from mindspore.train.loss_scale_manager import DynamiclLossScaleManager, FixedlLossScaleManager

= MindExpression.so

MindSpore Deep Learning Framework

MindSpore FrontEnd Expression
Python API Training/Inference/Export Data Processing
MindSpore IR

Auto Parallel

MindSpore Graph Engine (Ascend/GPU/CPU Support)

GLLO Low Level Optimization Pipeline Parallel

Graph Execution On-Device Execution Distributed Libs (Comms/PS)

MindSpore Backend Runtime (Cloud/Edge/Mobile)

\\ y
’ Ascend 310 Ascend 910 Android/iOS ‘

Two
execution
graphs

Sending data
to different
devices

Sharing
dependencies

18.

MindData - Data Pre-proc

LM]S

MindSpore

Eric Zhang

The Al (Data)
Problem

19.

The pipeline
approach

Layers of
abstraction

_ ——
Supporting =
different API -

languages %

20.

The pipeline data processing approach

As mentioned before, the data graph is executed in
asynchronous fashion Image Folder Master

In the simple example, each file is

1. First read from disk into memory by Image Folder
2. Decoded into a 3 channel image

3. Batched into individual batchs

Having a pipeline allows us to utilize CPU resources to
the max.

Time block 1 Time block 2 Time block 3 Time block 4

To parallelize reading from disk, MindData adopts a -
multi-worker approach to maximize reading speed 19

Ffl Image Folder Batch

mags Folder Batch

mage Folder Batch

The pipeline
approach

Layers of
abstraction

_ ——
Supporting =
different API -

languages %

22.

What does each layer of abstraction mean

for MindData

MindData offers an APl which is composed of various
ops. The data pipeline has much simpler semantics
compared to the training graph.

Therefore our IR representation is simpler

API: User facing classes, abstracting away the
complexity of IR and underlying methods

IR: Logical representation of the object, knows how
to serialize itself. Optimizer works on IR. IR is
stateless

Sample
IR

RT: Stateful operators that handles data(tensor)
input/output

The key take-away is that there is a fine balance
between design complexity and features.

Respect objected oriented design and clearly define
responsibility of each component

MindData API decoupling end goal

» o

We distinguish between API, IR and runtime

\ Build
API Construct | IR | and Runtime
\ Optimize
We want the IR to be
We want the AP call stateless and be able
to create an IR object to return a runtime

object (like a builder)

What this means for retrieving runtime information from
front end language

-* We require getters based on IR

What this means for the tree ;
> we keep API simple -> \We require control methods from tree consumer
->we optimize based on i3
T L ol e Why is runtime information is hard?
- - Concurrency in a async pipeline
\We:only cheake the looicel ee cnom. For ot end dependont -> don't want o expose runtime object/methods directly
fealures, we have to construct iree object in FE language 1o the user
FE objects (e.g
Dataset generator) Sampler Schema Transforms
[Datasetode | | ObjectController | | Samplerobj SchemaObj | | ***Operation
‘ DatasetOp ‘ Runtime Object Sampler DataseiSchema TensorOp

23.

- Data Graph Training Graph

"children”:[

"callback":[

1
"children™:[

{
"callback":[

1
"children":[

{

"children":[
! “children™:[1#IR entry : @6_5_1_construct_wrapper.15

' 2 #attrs 3
1 3 check_set_strategy_valid_once_only : 1
"class_indexing":{ 4 #Total params : 2
B 5

1 6 %paral_x : <Tensor[Float32]x[const vector][]>
":jataset dir":"./data/dataset/testPK/data’", 7 %para2_y : <Tensor[Float32]x[const vector][]>

"decode":false, 8
"extensions":[g#TctaLsubgraph 1

11 subgraph attr:
12 check_set_strategy_valid_once_only : 1

i reErEl o s 13 subgraph @6_5_1_construct_wrapper15() {
nzapr;.tglp;wg(lmageFDlderDataset ' 14 %0([C;Node]5) = Add{%paral_x, %para2_y) primitive_attrs: {output_names:
"child_sampler™ [output], input_names: [x, y]}
- 15 : (<Tensor[Float32]x[const vector][]>, <Tensor[Float32]x[const vector][]>) ->
n u., (<Tensor[Float32]x[const vector][]>)
"Q:QEIS;mnpalf:g‘"%sequentialsamp[er-; 16 # In file /home/workspace/mindspore/mindsporefops/composite/
“start indax":0 multitype_ops/add_impl.py(129)/ return Fadd(x, y)/
} - 17 # In file demo.py(14)/ X=x+y/
1 18 %1([CNode]10) = Mul(%0, %para2_y) primitive_attrs: {output_names: [output],
"num_samples™:11, input_names: [x, yI}
"repte:cement";true, 19 : (<Tensor[Float32]x[const vector][]>, <Tensor[Float32]x[const vector][]>) ->
"sampler_name":"WeightedRandomSampler”, (<Tensor[Flnz_|t32]x[cnn5t vactor][]>) q " 0
"weights™] 20 i file ,r‘hon_-ue.*’workspace."m|ndspore.‘mmdspore/ops/cnmpus:tef
1.0 multitype_ops/mul_implLpy(48)/ return Ftensor_mul(x, y)/
0_1: 21 # In file demo.py(15)/ x=x*y/
0.02, 22 return(%1)
03 23 : (<Tensor[Float32]x[const vector](]>)
0.4: 235
0.05,
1.2,
043,
014,
0.015,
0.6,
11
1
i
}
1
"count":1,

"op_type":"Repeat”

24.

What does each layer of abstraction mean

for MindData

MindData offers an APl which is composed of various
ops. The data pipeline has much simpler semantics
compared to the training graph.

Therefore our IR representation is simpler

API: User facing classes, abstracting away the
complexity of IR and underlying methods

IR: Logical representation of the object, knows how
to serialize itself. Optimizer works on IR. IR is
stateless

Sample
IR

RT: Stateful operators that handles data(tensor)
input/output

The key take-away is that there is a fine balance
between design complexity and features.

Respect objected oriented design and clearly define
responsibility of each component

MindData API decoupling end goal

» o

We distinguish between API, IR and runtime

\ Build
API Construct | IR | and Runtime
\ Optimize
We want the IR to be
We want the AP call stateless and be able
to create an IR object to return a runtime

object (like a builder)

What this means for retrieving runtime information from
front end language

-* We require getters based on IR

What this means for the tree ;
> we keep API simple -> \We require control methods from tree consumer
->we optimize based on i3
T L ol e Why is runtime information is hard?
- - Concurrency in a async pipeline
\We:only cheake the looicel ee cnom. For ot end dependont -> don't want o expose runtime object/methods directly
fealures, we have to construct iree object in FE language 1o the user
FE objects (e.g
Dataset generator) Sampler Schema Transforms
[Datasetode | | ObjectController | | Samplerobj SchemaObj | | ***Operation
‘ DatasetOp ‘ Runtime Object Sampler DataseiSchema TensorOp

25.

The pipeline
approach

Layers of
abstraction

_ ——
Supporting =
different API -

languages %

26.

How MindData support different front end
languages

Once you get used to the responsibility separation of
the respective classes...

We are now able to have API level classes build into
the same IR for different front end languages.

By doing this we can easily add support for new front
end languages without changing the back end code

This structure exists for all execution platforms and
minimizes code maintenance efforts for mix/match
execution environment and front end languages(You
can run C++ front end on Linux/Android, or run python
API| for python/windows)

Binding

User Script

Pybind/Parser INI

C++ .
Construct AST
IR: Dataset
Build Tree
IR: DatasetOp
.
. ToDevies 5 / \ +HC) lee
PythonRursme Eymonfunsme Cos Runtim —
..... ’_}—) e ————(—L e
P -
HEL AR
1 o v

27.

The pipeline
approach

Layers of
abstraction

_ ——
Supporting =
different API -

languages %

28.

MindData - Data Pre-proc

LM]S

MindSpore

Eric Zhang

The Al (Data)
Problem

29.

Thank you!

MindSpore is opensource, for contribution,

please refer to
h -//gi m/min re/min r

Github mirror:
h -//gith m/min re-ai

Additional information about MindSpore
can be found at:

https:/www.mindspore.cn/

MindData - Data Pre-proc

LM]S

MindSpore

Eric Zhang

The Al (Data)
Problem

31.

