diff --git a/mindspore-jina/Dockerfile b/mindspore-jina/MindsporeLeNet/Dockerfile similarity index 100% rename from mindspore-jina/Dockerfile rename to mindspore-jina/MindsporeLeNet/Dockerfile diff --git a/mindspore-jina/config.yml b/mindspore-jina/MindsporeLeNet/config.yml similarity index 100% rename from mindspore-jina/config.yml rename to mindspore-jina/MindsporeLeNet/config.yml diff --git a/mindspore-jina/lenet/.keep b/mindspore-jina/MindsporeLeNet/lenet/.keep similarity index 100% rename from mindspore-jina/lenet/.keep rename to mindspore-jina/MindsporeLeNet/lenet/.keep diff --git a/mindspore-jina/manifest.yml b/mindspore-jina/MindsporeLeNet/manifest.yml similarity index 100% rename from mindspore-jina/manifest.yml rename to mindspore-jina/MindsporeLeNet/manifest.yml diff --git a/mindspore-jina/MindsporeLeNet/requirements.txt b/mindspore-jina/MindsporeLeNet/requirements.txt new file mode 100644 index 0000000..734db7b --- /dev/null +++ b/mindspore-jina/MindsporeLeNet/requirements.txt @@ -0,0 +1 @@ +jina diff --git a/mindspore-jina/tests/__init__.py b/mindspore-jina/MindsporeLeNet/tests/__init__.py similarity index 100% rename from mindspore-jina/tests/__init__.py rename to mindspore-jina/MindsporeLeNet/tests/__init__.py diff --git a/mindspore-jina/tests/test_mindsporelenet.py b/mindspore-jina/MindsporeLeNet/tests/test_mindsporelenet.py similarity index 100% rename from mindspore-jina/tests/test_mindsporelenet.py rename to mindspore-jina/MindsporeLeNet/tests/test_mindsporelenet.py diff --git a/mindspore-jina/__init__.py b/mindspore-jina/__init__.py deleted file mode 100644 index 67884a9..0000000 --- a/mindspore-jina/__init__.py +++ /dev/null @@ -1,37 +0,0 @@ -import numpy as np -from jina.executors.encoders.frameworks import BaseMindsporeEncoder - - -class MindsporeLeNet(BaseMindsporeEncoder): - """ - :class:`MindsporeLeNet` Encoding image into vectors using mindspore. - """ - - def encode(self, data, *args, **kwargs): - # data is B x D, where D = 28 * 28 - # LeNet only accepts BCHW format where H=W=32 - # hence we need to do some simple transform - from mindspore import Tensor - - data = np.pad(data.reshape([-1, 1, 28, 28]), - [(0, 0), (0, 0), (0, 4), (0, 4)]).astype('float32') - return self.model(Tensor(data)).asnumpy() - - def get_cell(self): - from .lenet.src.lenet import LeNet5 - class LeNet5Embed(LeNet5): - def construct(self, x): - x = self.conv1(x) - x = self.relu(x) - x = self.max_pool2d(x) - x = self.conv2(x) - x = self.relu(x) - x = self.max_pool2d(x) - x = self.flatten(x) - x = self.fc1(x) - x = self.relu(x) - x = self.fc2(x) - x = self.relu(x) - return x - - return LeNet5Embed()