|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ######################## train lenet example ########################
- train lenet and get network model files(.ckpt) :
- python train.py --data_path /YourDataPath
- """
-
- import os
- import argparse
- from src.config import mnist_cfg as cfg
- from src.dataset import create_dataset
- from src.lenet import LeNet5
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.common import set_seed
-
-
- parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
- parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
- help='device where the code will be implemented (default: Ascend)')
- parser.add_argument('--data_path', type=str, default="./Data",
- help='path where the dataset is saved')
- parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
- path where the trained ckpt file')
- args = parser.parse_args()
- set_seed(1)
-
-
- if __name__ == "__main__":
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- ds_train = create_dataset(os.path.join(args.data_path, "train"), cfg.batch_size)
- if ds_train.get_dataset_size() == 0:
- raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
-
- network = LeNet5(cfg.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
- config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory=args.ckpt_path, config=config_ck)
-
- if args.device_target != "Ascend":
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
- else:
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}, amp_level="O2")
-
- print("============== Starting Training ==============")
- model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
|