From d7def3288a82f637c504ee25cf21870828f0b2f7 Mon Sep 17 00:00:00 2001 From: kkkim <314127900@qq.com> Date: Mon, 4 Dec 2017 21:45:25 +0800 Subject: [PATCH] pytorch resnet inception v2 --- src/core/resnet_inception_v2.py | 279 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 279 insertions(+) create mode 100644 src/core/resnet_inception_v2.py diff --git a/src/core/resnet_inception_v2.py b/src/core/resnet_inception_v2.py new file mode 100644 index 0000000..9108fc8 --- /dev/null +++ b/src/core/resnet_inception_v2.py @@ -0,0 +1,279 @@ +import torch +import torch.nn as nn +import torch.utils.model_zoo as model_zoo +import os +import sys + + +class BasicConv2d(nn.Module): + def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): + super(BasicConv2d, self).__init__() + self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, + bias=False) # verify bias false + self.bn = nn.BatchNorm2d(out_planes, eps=0.001, momentum=0, affine=True) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.relu(x) + return x + + +class Mixed_5b(nn.Module): + def __init__(self): + super(Mixed_5b, self).__init__() + + self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(192, 48, kernel_size=1, stride=1), + BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2) + ) + + self.branch2 = nn.Sequential( + BasicConv2d(192, 64, kernel_size=1, stride=1), + BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1), + BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1) + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + BasicConv2d(192, 64, kernel_size=1, stride=1) + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Block35(nn.Module): + def __init__(self, scale=1.0): + super(Block35, self).__init__() + + self.scale = scale + + self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(320, 32, kernel_size=1, stride=1), + BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1) + ) + + self.branch2 = nn.Sequential( + BasicConv2d(320, 32, kernel_size=1, stride=1), + BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1), + BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1) + ) + + self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.relu(out) + return out + + +class Mixed_6a(nn.Module): + def __init__(self): + super(Mixed_6a, self).__init__() + + self.branch0 = BasicConv2d(320, 384, kernel_size=3, stride=2) + + self.branch1 = nn.Sequential( + BasicConv2d(320, 256, kernel_size=1, stride=1), + BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1), + BasicConv2d(256, 384, kernel_size=3, stride=2) + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class Block17(nn.Module): + def __init__(self, scale=1.0): + super(Block17, self).__init__() + + self.scale = scale + + self.branch0 = BasicConv2d(1088, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(1088, 128, kernel_size=1, stride=1), + BasicConv2d(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)), + BasicConv2d(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)) + ) + + self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.relu(out) + return out + + +class Mixed_7a(nn.Module): + def __init__(self): + super(Mixed_7a, self).__init__() + + self.branch0 = nn.Sequential( + BasicConv2d(1088, 256, kernel_size=1, stride=1), + BasicConv2d(256, 384, kernel_size=3, stride=2) + ) + + self.branch1 = nn.Sequential( + BasicConv2d(1088, 256, kernel_size=1, stride=1), + BasicConv2d(256, 288, kernel_size=3, stride=2) + ) + + self.branch2 = nn.Sequential( + BasicConv2d(1088, 256, kernel_size=1, stride=1), + BasicConv2d(256, 288, kernel_size=3, stride=1, padding=1), + BasicConv2d(288, 320, kernel_size=3, stride=2) + ) + + self.branch3 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Block8(nn.Module): + def __init__(self, scale=1.0, noReLU=False): + super(Block8, self).__init__() + + self.scale = scale + self.noReLU = noReLU + + self.branch0 = BasicConv2d(2080, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(2080, 192, kernel_size=1, stride=1), + BasicConv2d(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)), + BasicConv2d(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)) + ) + + self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1) + if not self.noReLU: + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + if not self.noReLU: + out = self.relu(out) + return out + + +class InceptionResnetV2(nn.Module): + def __init__(self, num_classes=1001): + super(InceptionResnetV2, self).__init__() + self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2) + self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1) + self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1) + self.maxpool_3a = nn.MaxPool2d(3, stride=2) + self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1) + self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) + self.maxpool_5a = nn.MaxPool2d(3, stride=2) + self.mixed_5b = Mixed_5b() + self.repeat = nn.Sequential( + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17) + ) + self.mixed_6a = Mixed_6a() + self.repeat_1 = nn.Sequential( + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10) + ) + self.mixed_7a = Mixed_7a() + self.repeat_2 = nn.Sequential( + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20) + ) + self.block8 = Block8(noReLU=True) + self.conv2d_7b = BasicConv2d(2080, 1536, kernel_size=1, stride=1) + self.avgpool_1a = nn.AvgPool2d(8, count_include_pad=False) + self.classif = nn.Linear(1536, num_classes) + + def forward(self, x): + x = self.conv2d_1a(x) + x = self.conv2d_2a(x) + x = self.conv2d_2b(x) + x = self.maxpool_3a(x) + x = self.conv2d_3b(x) + x = self.conv2d_4a(x) + x = self.maxpool_5a(x) + x = self.mixed_5b(x) + x = self.repeat(x) + x = self.mixed_6a(x) + x = self.repeat_1(x) + x = self.mixed_7a(x) + x = self.repeat_2(x) + x = self.block8(x) + x = self.conv2d_7b(x) + x = self.avgpool_1a(x) + x = x.view(x.size(0), -1) + x = self.classif(x) + return x \ No newline at end of file