import cv2 from dface.core.detect import create_mtcnn_net, MtcnnDetector from dface.core import vision if __name__ == '__main__': # refer to your local model path p_model = "./model_store/pnet_epoch.pt" r_model = "./model_store/rnet_epoch.pt" o_model = "./model_store/onet_epoch.pt" #use cpu version set use_cuda=False, if you want to use gpu version set use_cuda=True pnet, rnet, onet = create_mtcnn_net(p_model_path=p_model, r_model_path=r_model, o_model_path=o_model, use_cuda=False) mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, onet=onet, min_face_size=24) img = cv2.imread("./test.jpg") b, g, r = cv2.split(img) img2 = cv2.merge([r, g, b]) bboxs, landmarks = mtcnn_detector.detect_face(img) # print box_align vision.vis_face(img2,bboxs,landmarks)