|
- from dface.core.image_reader import TrainImageReader
- import datetime
- import os
- from dface.core.models import PNet,RNet,ONet,LossFn
- import torch
- from torch.autograd import Variable
- import dface.core.image_tools as image_tools
-
-
-
-
-
- def compute_accuracy(prob_cls, gt_cls):
- prob_cls = torch.squeeze(prob_cls)
- gt_cls = torch.squeeze(gt_cls)
-
- #we only need the detection which >= 0
- mask = torch.ge(gt_cls,0)
- #get valid element
- valid_gt_cls = torch.masked_select(gt_cls,mask)
- valid_prob_cls = torch.masked_select(prob_cls,mask)
- size = min(valid_gt_cls.size()[0], valid_prob_cls.size()[0])
- prob_ones = torch.ge(valid_prob_cls,0.6).float()
- right_ones = torch.eq(prob_ones,valid_gt_cls).float()
-
- return torch.div(torch.mul(torch.sum(right_ones),float(1.0)),float(size))
-
-
- def train_pnet(model_store_path, end_epoch,imdb,
- batch_size,frequent=50,base_lr=0.01,use_cuda=True):
-
- if not os.path.exists(model_store_path):
- os.makedirs(model_store_path)
-
- lossfn = LossFn()
- net = PNet(is_train=True, use_cuda=use_cuda)
- net.train()
- if use_cuda:
- net.cuda()
-
- optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)
-
- train_data=TrainImageReader(imdb,12,batch_size,shuffle=True)
-
-
- for cur_epoch in range(1,end_epoch+1):
- train_data.reset()
- accuracy_list=[]
- cls_loss_list=[]
- bbox_loss_list=[]
- # landmark_loss_list=[]
-
- for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data):
-
- im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ]
- im_tensor = torch.stack(im_tensor)
-
- im_tensor = Variable(im_tensor)
- gt_label = Variable(torch.from_numpy(gt_label).float())
-
- gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
- # gt_landmark = Variable(torch.from_numpy(gt_landmark).float())
-
- if use_cuda:
- im_tensor = im_tensor.cuda()
- gt_label = gt_label.cuda()
- gt_bbox = gt_bbox.cuda()
- # gt_landmark = gt_landmark.cuda()
-
- cls_pred, box_offset_pred = net(im_tensor)
- # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)
-
- cls_loss = lossfn.cls_loss(gt_label,cls_pred)
- box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred)
- # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)
-
- all_loss = cls_loss*1.0+box_offset_loss*0.5
-
- if batch_idx%frequent==0:
- accuracy=compute_accuracy(cls_pred,gt_label)
-
- show1 = accuracy.data.tolist()[0]
- show2 = cls_loss.data.tolist()[0]
- show3 = box_offset_loss.data.tolist()[0]
- show5 = all_loss.data.tolist()[0]
-
- print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(),cur_epoch,batch_idx, show1,show2,show3,show5,base_lr))
- accuracy_list.append(accuracy)
- cls_loss_list.append(cls_loss)
- bbox_loss_list.append(box_offset_loss)
-
- optimizer.zero_grad()
- all_loss.backward()
- optimizer.step()
-
-
- accuracy_avg = torch.mean(torch.cat(accuracy_list))
- cls_loss_avg = torch.mean(torch.cat(cls_loss_list))
- bbox_loss_avg = torch.mean(torch.cat(bbox_loss_list))
- # landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list))
-
- show6 = accuracy_avg.data.tolist()[0]
- show7 = cls_loss_avg.data.tolist()[0]
- show8 = bbox_loss_avg.data.tolist()[0]
-
- print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s" % (cur_epoch, show6, show7, show8))
- torch.save(net.state_dict(), os.path.join(model_store_path,"pnet_epoch_%d.pt" % cur_epoch))
- torch.save(net, os.path.join(model_store_path,"pnet_epoch_model_%d.pkl" % cur_epoch))
-
-
-
-
- def train_rnet(model_store_path, end_epoch,imdb,
- batch_size,frequent=50,base_lr=0.01,use_cuda=True):
-
- if not os.path.exists(model_store_path):
- os.makedirs(model_store_path)
-
- lossfn = LossFn()
- net = RNet(is_train=True, use_cuda=use_cuda)
- net.train()
- if use_cuda:
- net.cuda()
-
- optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)
-
- train_data=TrainImageReader(imdb,24,batch_size,shuffle=True)
-
-
- for cur_epoch in range(1,end_epoch+1):
- train_data.reset()
- accuracy_list=[]
- cls_loss_list=[]
- bbox_loss_list=[]
- landmark_loss_list=[]
-
- for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data):
-
- im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ]
- im_tensor = torch.stack(im_tensor)
-
- im_tensor = Variable(im_tensor)
- gt_label = Variable(torch.from_numpy(gt_label).float())
-
- gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
- gt_landmark = Variable(torch.from_numpy(gt_landmark).float())
-
- if use_cuda:
- im_tensor = im_tensor.cuda()
- gt_label = gt_label.cuda()
- gt_bbox = gt_bbox.cuda()
- gt_landmark = gt_landmark.cuda()
-
- cls_pred, box_offset_pred = net(im_tensor)
- # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)
-
- cls_loss = lossfn.cls_loss(gt_label,cls_pred)
- box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred)
- # landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)
-
- all_loss = cls_loss*1.0+box_offset_loss*0.5
-
- if batch_idx%frequent==0:
- accuracy=compute_accuracy(cls_pred,gt_label)
-
- show1 = accuracy.data.tolist()[0]
- show2 = cls_loss.data.tolist()[0]
- show3 = box_offset_loss.data.tolist()[0]
- # show4 = landmark_loss.data.tolist()[0]
- show5 = all_loss.data.tolist()[0]
-
- print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(), cur_epoch, batch_idx, show1, show2, show3, show5, base_lr))
- accuracy_list.append(accuracy)
- cls_loss_list.append(cls_loss)
- bbox_loss_list.append(box_offset_loss)
- # landmark_loss_list.append(landmark_loss)
-
- optimizer.zero_grad()
- all_loss.backward()
- optimizer.step()
-
-
- accuracy_avg = torch.mean(torch.cat(accuracy_list))
- cls_loss_avg = torch.mean(torch.cat(cls_loss_list))
- bbox_loss_avg = torch.mean(torch.cat(bbox_loss_list))
- # landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list))
-
- show6 = accuracy_avg.data.tolist()[0]
- show7 = cls_loss_avg.data.tolist()[0]
- show8 = bbox_loss_avg.data.tolist()[0]
- # show9 = landmark_loss_avg.data.tolist()[0]
-
- print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s" % (cur_epoch, show6, show7, show8))
- torch.save(net.state_dict(), os.path.join(model_store_path,"rnet_epoch_%d.pt" % cur_epoch))
- torch.save(net, os.path.join(model_store_path,"rnet_epoch_model_%d.pkl" % cur_epoch))
-
-
- def train_onet(model_store_path, end_epoch,imdb,
- batch_size,frequent=50,base_lr=0.01,use_cuda=True):
-
- if not os.path.exists(model_store_path):
- os.makedirs(model_store_path)
-
- lossfn = LossFn()
- net = ONet(is_train=True)
- net.train()
- if use_cuda:
- net.cuda()
-
- optimizer = torch.optim.Adam(net.parameters(), lr=base_lr)
-
- train_data=TrainImageReader(imdb,48,batch_size,shuffle=True)
-
-
- for cur_epoch in range(1,end_epoch+1):
- train_data.reset()
- accuracy_list=[]
- cls_loss_list=[]
- bbox_loss_list=[]
- landmark_loss_list=[]
-
- for batch_idx,(image,(gt_label,gt_bbox,gt_landmark))in enumerate(train_data):
-
- im_tensor = [ image_tools.convert_image_to_tensor(image[i,:,:,:]) for i in range(image.shape[0]) ]
- im_tensor = torch.stack(im_tensor)
-
- im_tensor = Variable(im_tensor)
- gt_label = Variable(torch.from_numpy(gt_label).float())
-
- gt_bbox = Variable(torch.from_numpy(gt_bbox).float())
- gt_landmark = Variable(torch.from_numpy(gt_landmark).float())
-
- if use_cuda:
- im_tensor = im_tensor.cuda()
- gt_label = gt_label.cuda()
- gt_bbox = gt_bbox.cuda()
- gt_landmark = gt_landmark.cuda()
-
- cls_pred, box_offset_pred, landmark_offset_pred = net(im_tensor)
- # all_loss, cls_loss, offset_loss = lossfn.loss(gt_label=label_y,gt_offset=bbox_y, pred_label=cls_pred, pred_offset=box_offset_pred)
-
- cls_loss = lossfn.cls_loss(gt_label,cls_pred)
- box_offset_loss = lossfn.box_loss(gt_label,gt_bbox,box_offset_pred)
- landmark_loss = lossfn.landmark_loss(gt_label,gt_landmark,landmark_offset_pred)
-
- all_loss = cls_loss*0.8+box_offset_loss*0.6+landmark_loss*1.5
-
- if batch_idx%frequent==0:
- accuracy=compute_accuracy(cls_pred,gt_label)
-
- show1 = accuracy.data.tolist()[0]
- show2 = cls_loss.data.tolist()[0]
- show3 = box_offset_loss.data.tolist()[0]
- show4 = landmark_loss.data.tolist()[0]
- show5 = all_loss.data.tolist()[0]
-
- print("%s : Epoch: %d, Step: %d, accuracy: %s, det loss: %s, bbox loss: %s, landmark loss: %s, all_loss: %s, lr:%s "%(datetime.datetime.now(),cur_epoch,batch_idx, show1,show2,show3,show4,show5,base_lr))
- accuracy_list.append(accuracy)
- cls_loss_list.append(cls_loss)
- bbox_loss_list.append(box_offset_loss)
- landmark_loss_list.append(landmark_loss)
-
- optimizer.zero_grad()
- all_loss.backward()
- optimizer.step()
-
-
- accuracy_avg = torch.mean(torch.cat(accuracy_list))
- cls_loss_avg = torch.mean(torch.cat(cls_loss_list))
- bbox_loss_avg = torch.mean(torch.cat(bbox_loss_list))
- landmark_loss_avg = torch.mean(torch.cat(landmark_loss_list))
-
- show6 = accuracy_avg.data.tolist()[0]
- show7 = cls_loss_avg.data.tolist()[0]
- show8 = bbox_loss_avg.data.tolist()[0]
- show9 = landmark_loss_avg.data.tolist()[0]
-
- print("Epoch: %d, accuracy: %s, cls loss: %s, bbox loss: %s, landmark loss: %s " % (cur_epoch, show6, show7, show8, show9))
- torch.save(net.state_dict(), os.path.join(model_store_path,"onet_epoch_%d.pt" % cur_epoch))
- torch.save(net, os.path.join(model_store_path,"onet_epoch_model_%d.pkl" % cur_epoch))
|