|
- import cv2
- from dface.core.detect import create_mtcnn_net, MtcnnDetector
- from dface.core import vision
-
-
- if __name__ == '__main__':
-
- # refer to your local model path
- p_model = "./model_store/pnet_epoch.pt"
- r_model = "./model_store/rnet_epoch.pt"
- o_model = "./model_store/onet_epoch.pt"
-
- #use cpu version set use_cuda=False, if you want to use gpu version set use_cuda=True
- pnet, rnet, onet = create_mtcnn_net(p_model_path=p_model, r_model_path=r_model, o_model_path=o_model, use_cuda=False)
- mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, onet=onet, min_face_size=24)
-
- img = cv2.imread("./test.jpg")
- b, g, r = cv2.split(img)
- img2 = cv2.merge([r, g, b])
-
- bboxs, landmarks = mtcnn_detector.detect_face(img)
- # print box_align
-
- vision.vis_face(img2,bboxs,landmarks)
|