You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

median_graph_estimator_py.py 64 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Mon Mar 16 18:04:55 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. from gklearn.ged.env import AlgorithmState, NodeMap
  9. from gklearn.ged.util import misc
  10. from gklearn.utils import Timer
  11. import time
  12. from tqdm import tqdm
  13. import sys
  14. import networkx as nx
  15. import multiprocessing
  16. from multiprocessing import Pool
  17. from functools import partial
  18. class MedianGraphEstimatorPy(object): # @todo: differ dummy_node from undifined node?
  19. """Estimate median graphs using the pure Python version of GEDEnv.
  20. """
  21. def __init__(self, ged_env, constant_node_costs):
  22. """Constructor.
  23. Parameters
  24. ----------
  25. ged_env : gklearn.gedlib.gedlibpy.GEDEnv
  26. Initialized GED environment. The edit costs must be set by the user.
  27. constant_node_costs : Boolean
  28. Set to True if the node relabeling costs are constant.
  29. """
  30. self._ged_env = ged_env
  31. self._init_method = 'BRANCH_FAST'
  32. self._init_options = ''
  33. self._descent_method = 'BRANCH_FAST'
  34. self._descent_options = ''
  35. self._refine_method = 'IPFP'
  36. self._refine_options = ''
  37. self._constant_node_costs = constant_node_costs
  38. self._labeled_nodes = (ged_env.get_num_node_labels() > 1)
  39. self._node_del_cost = ged_env.get_node_del_cost(ged_env.get_node_label(1, to_dict=False))
  40. self._node_ins_cost = ged_env.get_node_ins_cost(ged_env.get_node_label(1, to_dict=False))
  41. self._labeled_edges = (ged_env.get_num_edge_labels() > 1)
  42. self._edge_del_cost = ged_env.get_edge_del_cost(ged_env.get_edge_label(1, to_dict=False))
  43. self._edge_ins_cost = ged_env.get_edge_ins_cost(ged_env.get_edge_label(1, to_dict=False))
  44. self._init_type = 'RANDOM'
  45. self._num_random_inits = 10
  46. self._desired_num_random_inits = 10
  47. self._use_real_randomness = True
  48. self._seed = 0
  49. self._parallel = True
  50. self._update_order = True
  51. self._sort_graphs = True # sort graphs by size when computing GEDs.
  52. self._refine = True
  53. self._time_limit_in_sec = 0
  54. self._epsilon = 0.0001
  55. self._max_itrs = 100
  56. self._max_itrs_without_update = 3
  57. self._num_inits_increase_order = 10
  58. self._init_type_increase_order = 'K-MEANS++'
  59. self._max_itrs_increase_order = 10
  60. self._print_to_stdout = 2
  61. self._median_id = np.inf # @todo: check
  62. self._node_maps_from_median = {}
  63. self._sum_of_distances = 0
  64. self._best_init_sum_of_distances = np.inf
  65. self._converged_sum_of_distances = np.inf
  66. self._runtime = None
  67. self._runtime_initialized = None
  68. self._runtime_converged = None
  69. self._itrs = [] # @todo: check: {} ?
  70. self._num_decrease_order = 0
  71. self._num_increase_order = 0
  72. self._num_converged_descents = 0
  73. self._state = AlgorithmState.TERMINATED
  74. self._label_names = {}
  75. if ged_env is None:
  76. raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.')
  77. elif not ged_env.is_initialized():
  78. raise Exception('The GED environment is uninitialized. Call gedlibpy.GEDEnv.init() before passing it to the constructor of MedianGraphEstimator.')
  79. def set_options(self, options):
  80. """Sets the options of the estimator.
  81. Parameters
  82. ----------
  83. options : string
  84. String that specifies with which options to run the estimator.
  85. """
  86. self._set_default_options()
  87. options_map = misc.options_string_to_options_map(options)
  88. for opt_name, opt_val in options_map.items():
  89. if opt_name == 'init-type':
  90. self._init_type = opt_val
  91. if opt_val != 'MEDOID' and opt_val != 'RANDOM' and opt_val != 'MIN' and opt_val != 'MAX' and opt_val != 'MEAN':
  92. raise Exception('Invalid argument ' + opt_val + ' for option init-type. Usage: options = "[--init-type RANDOM|MEDOID|EMPTY|MIN|MAX|MEAN] [...]"')
  93. elif opt_name == 'random-inits':
  94. try:
  95. self._num_random_inits = int(opt_val)
  96. self._desired_num_random_inits = self._num_random_inits
  97. except:
  98. raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"')
  99. if self._num_random_inits <= 0:
  100. raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"')
  101. elif opt_name == 'randomness':
  102. if opt_val == 'PSEUDO':
  103. self._use_real_randomness = False
  104. elif opt_val == 'REAL':
  105. self._use_real_randomness = True
  106. else:
  107. raise Exception('Invalid argument "' + opt_val + '" for option randomness. Usage: options = "[--randomness REAL|PSEUDO] [...]"')
  108. elif opt_name == 'stdout':
  109. if opt_val == '0':
  110. self._print_to_stdout = 0
  111. elif opt_val == '1':
  112. self._print_to_stdout = 1
  113. elif opt_val == '2':
  114. self._print_to_stdout = 2
  115. else:
  116. raise Exception('Invalid argument "' + opt_val + '" for option stdout. Usage: options = "[--stdout 0|1|2] [...]"')
  117. elif opt_name == 'parallel':
  118. if opt_val == 'TRUE':
  119. self._parallel = True
  120. elif opt_val == 'FALSE':
  121. self._parallel = False
  122. else:
  123. raise Exception('Invalid argument "' + opt_val + '" for option parallel. Usage: options = "[--parallel TRUE|FALSE] [...]"')
  124. elif opt_name == 'update-order':
  125. if opt_val == 'TRUE':
  126. self._update_order = True
  127. elif opt_val == 'FALSE':
  128. self._update_order = False
  129. else:
  130. raise Exception('Invalid argument "' + opt_val + '" for option update-order. Usage: options = "[--update-order TRUE|FALSE] [...]"')
  131. elif opt_name == 'sort-graphs':
  132. if opt_val == 'TRUE':
  133. self._sort_graphs = True
  134. elif opt_val == 'FALSE':
  135. self._sort_graphs = False
  136. else:
  137. raise Exception('Invalid argument "' + opt_val + '" for option sort-graphs. Usage: options = "[--sort-graphs TRUE|FALSE] [...]"')
  138. elif opt_name == 'refine':
  139. if opt_val == 'TRUE':
  140. self._refine = True
  141. elif opt_val == 'FALSE':
  142. self._refine = False
  143. else:
  144. raise Exception('Invalid argument "' + opt_val + '" for option refine. Usage: options = "[--refine TRUE|FALSE] [...]"')
  145. elif opt_name == 'time-limit':
  146. try:
  147. self._time_limit_in_sec = float(opt_val)
  148. except:
  149. raise Exception('Invalid argument "' + opt_val + '" for option time-limit. Usage: options = "[--time-limit <convertible to double>] [...]')
  150. elif opt_name == 'max-itrs':
  151. try:
  152. self._max_itrs = int(opt_val)
  153. except:
  154. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs. Usage: options = "[--max-itrs <convertible to int>] [...]')
  155. elif opt_name == 'max-itrs-without-update':
  156. try:
  157. self._max_itrs_without_update = int(opt_val)
  158. except:
  159. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-without-update. Usage: options = "[--max-itrs-without-update <convertible to int>] [...]')
  160. elif opt_name == 'seed':
  161. try:
  162. self._seed = int(opt_val)
  163. except:
  164. raise Exception('Invalid argument "' + opt_val + '" for option seed. Usage: options = "[--seed <convertible to int greater equal 0>] [...]')
  165. elif opt_name == 'epsilon':
  166. try:
  167. self._epsilon = float(opt_val)
  168. except:
  169. raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]')
  170. if self._epsilon <= 0:
  171. raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]')
  172. elif opt_name == 'inits-increase-order':
  173. try:
  174. self._num_inits_increase_order = int(opt_val)
  175. except:
  176. raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"')
  177. if self._num_inits_increase_order <= 0:
  178. raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"')
  179. elif opt_name == 'init-type-increase-order':
  180. self._init_type_increase_order = opt_val
  181. if opt_val != 'CLUSTERS' and opt_val != 'K-MEANS++':
  182. raise Exception('Invalid argument ' + opt_val + ' for option init-type-increase-order. Usage: options = "[--init-type-increase-order CLUSTERS|K-MEANS++] [...]"')
  183. elif opt_name == 'max-itrs-increase-order':
  184. try:
  185. self._max_itrs_increase_order = int(opt_val)
  186. except:
  187. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-increase-order. Usage: options = "[--max-itrs-increase-order <convertible to int>] [...]')
  188. else:
  189. valid_options = '[--init-type <arg>] [--random-inits <arg>] [--randomness <arg>] [--seed <arg>] [--stdout <arg>] '
  190. valid_options += '[--time-limit <arg>] [--max-itrs <arg>] [--epsilon <arg>] '
  191. valid_options += '[--inits-increase-order <arg>] [--init-type-increase-order <arg>] [--max-itrs-increase-order <arg>]'
  192. raise Exception('Invalid option "' + opt_name + '". Usage: options = "' + valid_options + '"')
  193. def set_init_method(self, init_method, init_options={}):
  194. """Selects method to be used for computing the initial medoid graph.
  195. Parameters
  196. ----------
  197. init_method : string
  198. The selected method. Default: ged::Options::GEDMethod::BRANCH_UNIFORM.
  199. init_options : string
  200. The options for the selected method. Default: "".
  201. Notes
  202. -----
  203. Has no effect unless "--init-type MEDOID" is passed to set_options().
  204. """
  205. self._init_method = init_method;
  206. self._init_options = init_options;
  207. def set_descent_method(self, descent_method, descent_options=''):
  208. """Selects method to be used for block gradient descent..
  209. Parameters
  210. ----------
  211. descent_method : string
  212. The selected method. Default: ged::Options::GEDMethod::BRANCH_FAST.
  213. descent_options : string
  214. The options for the selected method. Default: "".
  215. Notes
  216. -----
  217. Has no effect unless "--init-type MEDOID" is passed to set_options().
  218. """
  219. self._descent_method = descent_method;
  220. self._descent_options = descent_options;
  221. def set_refine_method(self, refine_method, refine_options):
  222. """Selects method to be used for improving the sum of distances and the node maps for the converged median.
  223. Parameters
  224. ----------
  225. refine_method : string
  226. The selected method. Default: "IPFP".
  227. refine_options : string
  228. The options for the selected method. Default: "".
  229. Notes
  230. -----
  231. Has no effect if "--refine FALSE" is passed to set_options().
  232. """
  233. self._refine_method = refine_method
  234. self._refine_options = refine_options
  235. def run(self, graph_ids, set_median_id, gen_median_id):
  236. """Computes a generalized median graph.
  237. Parameters
  238. ----------
  239. graph_ids : list[integer]
  240. The IDs of the graphs for which the median should be computed. Must have been added to the environment passed to the constructor.
  241. set_median_id : integer
  242. The ID of the computed set-median. A dummy graph with this ID must have been added to the environment passed to the constructor. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph().
  243. gen_median_id : integer
  244. The ID of the computed generalized median. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph().
  245. """
  246. # Sanity checks.
  247. if len(graph_ids) == 0:
  248. raise Exception('Empty vector of graph IDs, unable to compute median.')
  249. all_graphs_empty = True
  250. for graph_id in graph_ids:
  251. if self._ged_env.get_graph_num_nodes(graph_id) > 0:
  252. all_graphs_empty = False
  253. break
  254. if all_graphs_empty:
  255. raise Exception('All graphs in the collection are empty.')
  256. # Start timer and record start time.
  257. start = time.time()
  258. timer = Timer(self._time_limit_in_sec)
  259. self._median_id = gen_median_id
  260. self._state = AlgorithmState.TERMINATED
  261. # Get NetworkX graph representations of the input graphs.
  262. graphs = {}
  263. for graph_id in graph_ids:
  264. # @todo: get_nx_graph() function may need to be modified according to the coming code.
  265. graphs[graph_id] = self._ged_env.get_nx_graph(graph_id)
  266. # print(self._ged_env.get_graph_internal_id(0))
  267. # print(graphs[0].graph)
  268. # print(graphs[0].nodes(data=True))
  269. # print(graphs[0].edges(data=True))
  270. # print(nx.adjacency_matrix(graphs[0]))
  271. # Construct initial medians.
  272. medians = []
  273. self._construct_initial_medians(graph_ids, timer, medians)
  274. end_init = time.time()
  275. self._runtime_initialized = end_init - start
  276. # print(medians[0].graph)
  277. # print(medians[0].nodes(data=True))
  278. # print(medians[0].edges(data=True))
  279. # print(nx.adjacency_matrix(medians[0]))
  280. # Reset information about iterations and number of times the median decreases and increases.
  281. self._itrs = [0] * len(medians)
  282. self._num_decrease_order = 0
  283. self._num_increase_order = 0
  284. self._num_converged_descents = 0
  285. # Initialize the best median.
  286. best_sum_of_distances = np.inf
  287. self._best_init_sum_of_distances = np.inf
  288. node_maps_from_best_median = {}
  289. # Run block gradient descent from all initial medians.
  290. self._ged_env.set_method(self._descent_method, self._descent_options)
  291. for median_pos in range(0, len(medians)):
  292. # Terminate if the timer has expired and at least one SOD has been computed.
  293. if timer.expired() and median_pos > 0:
  294. break
  295. # Print information about current iteration.
  296. if self._print_to_stdout == 2:
  297. print('\n===========================================================')
  298. print('Block gradient descent for initial median', str(median_pos + 1), 'of', str(len(medians)), '.')
  299. print('-----------------------------------------------------------')
  300. # Get reference to the median.
  301. median = medians[median_pos]
  302. # Load initial median into the environment.
  303. self._ged_env.load_nx_graph(median, gen_median_id)
  304. self._ged_env.init(self._ged_env.get_init_type())
  305. # Compute node maps and sum of distances for initial median.
  306. # xxx = self._node_maps_from_median
  307. self._compute_init_node_maps(graph_ids, gen_median_id)
  308. # yyy = self._node_maps_from_median
  309. self._best_init_sum_of_distances = min(self._best_init_sum_of_distances, self._sum_of_distances)
  310. self._ged_env.load_nx_graph(median, set_median_id)
  311. # print(self._best_init_sum_of_distances)
  312. # Run block gradient descent from initial median.
  313. converged = False
  314. itrs_without_update = 0
  315. while not self._termination_criterion_met(converged, timer, self._itrs[median_pos], itrs_without_update):
  316. # Print information about current iteration.
  317. if self._print_to_stdout == 2:
  318. print('\n===========================================================')
  319. print('Iteration', str(self._itrs[median_pos] + 1), 'for initial median', str(median_pos + 1), 'of', str(len(medians)), '.')
  320. print('-----------------------------------------------------------')
  321. # Initialize flags that tell us what happened in the iteration.
  322. median_modified = False
  323. node_maps_modified = False
  324. decreased_order = False
  325. increased_order = False
  326. # Update the median.
  327. median_modified = self._update_median(graphs, median)
  328. if self._update_order:
  329. if not median_modified or self._itrs[median_pos] == 0:
  330. decreased_order = self._decrease_order(graphs, median)
  331. if not decreased_order or self._itrs[median_pos] == 0:
  332. increased_order = self._increase_order(graphs, median)
  333. # Update the number of iterations without update of the median.
  334. if median_modified or decreased_order or increased_order:
  335. itrs_without_update = 0
  336. else:
  337. itrs_without_update += 1
  338. # Print information about current iteration.
  339. if self._print_to_stdout == 2:
  340. print('Loading median to environment: ... ', end='')
  341. # Load the median into the environment.
  342. # @todo: should this function use the original node label?
  343. self._ged_env.load_nx_graph(median, gen_median_id)
  344. self._ged_env.init(self._ged_env.get_init_type())
  345. # Print information about current iteration.
  346. if self._print_to_stdout == 2:
  347. print('done.')
  348. # Print information about current iteration.
  349. if self._print_to_stdout == 2:
  350. print('Updating induced costs: ... ', end='')
  351. # Compute induced costs of the old node maps w.r.t. the updated median.
  352. for graph_id in graph_ids:
  353. # print(self._node_maps_from_median[graph_id].induced_cost())
  354. # xxx = self._node_maps_from_median[graph_id]
  355. self._ged_env.compute_induced_cost(gen_median_id, graph_id, self._node_maps_from_median[graph_id])
  356. # print('---------------------------------------')
  357. # print(self._node_maps_from_median[graph_id].induced_cost())
  358. # @todo:!!!!!!!!!!!!!!!!!!!!!!!!!!!!This value is a slight different from the c++ program, which might be a bug! Use it very carefully!
  359. # Print information about current iteration.
  360. if self._print_to_stdout == 2:
  361. print('done.')
  362. # Update the node maps.
  363. node_maps_modified = self._update_node_maps()
  364. # Update the order of the median if no improvement can be found with the current order.
  365. # Update the sum of distances.
  366. old_sum_of_distances = self._sum_of_distances
  367. self._sum_of_distances = 0
  368. for graph_id, node_map in self._node_maps_from_median.items():
  369. self._sum_of_distances += node_map.induced_cost()
  370. # print(self._sum_of_distances)
  371. # Print information about current iteration.
  372. if self._print_to_stdout == 2:
  373. print('Old local SOD: ', old_sum_of_distances)
  374. print('New local SOD: ', self._sum_of_distances)
  375. print('Best converged SOD: ', best_sum_of_distances)
  376. print('Modified median: ', median_modified)
  377. print('Modified node maps: ', node_maps_modified)
  378. print('Decreased order: ', decreased_order)
  379. print('Increased order: ', increased_order)
  380. print('===========================================================\n')
  381. converged = not (median_modified or node_maps_modified or decreased_order or increased_order)
  382. self._itrs[median_pos] += 1
  383. # Update the best median.
  384. if self._sum_of_distances < best_sum_of_distances:
  385. best_sum_of_distances = self._sum_of_distances
  386. node_maps_from_best_median = self._node_maps_from_median.copy() # @todo: this is a shallow copy, not sure if it is enough.
  387. best_median = median
  388. # Update the number of converged descents.
  389. if converged:
  390. self._num_converged_descents += 1
  391. # Store the best encountered median.
  392. self._sum_of_distances = best_sum_of_distances
  393. self._node_maps_from_median = node_maps_from_best_median
  394. self._ged_env.load_nx_graph(best_median, gen_median_id)
  395. self._ged_env.init(self._ged_env.get_init_type())
  396. end_descent = time.time()
  397. self._runtime_converged = end_descent - start
  398. # Refine the sum of distances and the node maps for the converged median.
  399. self._converged_sum_of_distances = self._sum_of_distances
  400. if self._refine:
  401. self._improve_sum_of_distances(timer)
  402. # Record end time, set runtime and reset the number of initial medians.
  403. end = time.time()
  404. self._runtime = end - start
  405. self._num_random_inits = self._desired_num_random_inits
  406. # Print global information.
  407. if self._print_to_stdout != 0:
  408. print('\n===========================================================')
  409. print('Finished computation of generalized median graph.')
  410. print('-----------------------------------------------------------')
  411. print('Best SOD after initialization: ', self._best_init_sum_of_distances)
  412. print('Converged SOD: ', self._converged_sum_of_distances)
  413. if self._refine:
  414. print('Refined SOD: ', self._sum_of_distances)
  415. print('Overall runtime: ', self._runtime)
  416. print('Runtime of initialization: ', self._runtime_initialized)
  417. print('Runtime of block gradient descent: ', self._runtime_converged - self._runtime_initialized)
  418. if self._refine:
  419. print('Runtime of refinement: ', self._runtime - self._runtime_converged)
  420. print('Number of initial medians: ', len(medians))
  421. total_itr = 0
  422. num_started_descents = 0
  423. for itr in self._itrs:
  424. total_itr += itr
  425. if itr > 0:
  426. num_started_descents += 1
  427. print('Size of graph collection: ', len(graph_ids))
  428. print('Number of started descents: ', num_started_descents)
  429. print('Number of converged descents: ', self._num_converged_descents)
  430. print('Overall number of iterations: ', total_itr)
  431. print('Overall number of times the order decreased: ', self._num_decrease_order)
  432. print('Overall number of times the order increased: ', self._num_increase_order)
  433. print('===========================================================\n')
  434. def _improve_sum_of_distances(self, timer): # @todo: go through and test
  435. # Use method selected for refinement phase.
  436. self._ged_env.set_method(self._refine_method, self._refine_options)
  437. # Print information about current iteration.
  438. if self._print_to_stdout == 2:
  439. progress = tqdm(desc='Improving node maps', total=len(self._node_maps_from_median), file=sys.stdout)
  440. print('\n===========================================================')
  441. print('Improving node maps and SOD for converged median.')
  442. print('-----------------------------------------------------------')
  443. progress.update(1)
  444. # Improving the node maps.
  445. nb_nodes_median = self._ged_env.get_graph_num_nodes(self._gen_median_id)
  446. for graph_id, node_map in self._node_maps_from_median.items():
  447. if time.expired():
  448. if self._state == AlgorithmState.TERMINATED:
  449. self._state = AlgorithmState.CONVERGED
  450. break
  451. nb_nodes_g = self._ged_env.get_graph_num_nodes(graph_id)
  452. if nb_nodes_median <= nb_nodes_g or not self._sort_graphs:
  453. self._ged_env.run_method(self._gen_median_id, graph_id)
  454. if self._ged_env.get_upper_bound(self._gen_median_id, graph_id) < node_map.induced_cost():
  455. self._node_maps_from_median[graph_id] = self._ged_env.get_node_map(self._gen_median_id, graph_id)
  456. else:
  457. self._ged_env.run_method(graph_id, self._gen_median_id)
  458. if self._ged_env.get_upper_bound(graph_id, self._gen_median_id) < node_map.induced_cost():
  459. node_map_tmp = self._ged_env.get_node_map(graph_id, self._gen_median_id)
  460. node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map
  461. self._node_maps_from_median[graph_id] = node_map_tmp
  462. self._sum_of_distances += self._node_maps_from_median[graph_id].induced_cost()
  463. # Print information.
  464. if self._print_to_stdout == 2:
  465. progress.update(1)
  466. self._sum_of_distances = 0.0
  467. for key, val in self._node_maps_from_median.items():
  468. self._sum_of_distances += val.induced_cost()
  469. # Print information.
  470. if self._print_to_stdout == 2:
  471. print('===========================================================\n')
  472. def _median_available(self):
  473. return self._median_id != np.inf
  474. def get_state(self):
  475. if not self._median_available():
  476. raise Exception('No median has been computed. Call run() before calling get_state().')
  477. return self._state
  478. def get_sum_of_distances(self, state=''):
  479. """Returns the sum of distances.
  480. Parameters
  481. ----------
  482. state : string
  483. The state of the estimator. Can be 'initialized' or 'converged'. Default: ""
  484. Returns
  485. -------
  486. float
  487. The sum of distances (SOD) of the median when the estimator was in the state `state` during the last call to run(). If `state` is not given, the converged SOD (without refinement) or refined SOD (with refinement) is returned.
  488. """
  489. if not self._median_available():
  490. raise Exception('No median has been computed. Call run() before calling get_sum_of_distances().')
  491. if state == 'initialized':
  492. return self._best_init_sum_of_distances
  493. if state == 'converged':
  494. return self._converged_sum_of_distances
  495. return self._sum_of_distances
  496. def get_runtime(self, state):
  497. if not self._median_available():
  498. raise Exception('No median has been computed. Call run() before calling get_runtime().')
  499. if state == AlgorithmState.INITIALIZED:
  500. return self._runtime_initialized
  501. if state == AlgorithmState.CONVERGED:
  502. return self._runtime_converged
  503. return self._runtime
  504. def get_num_itrs(self):
  505. if not self._median_available():
  506. raise Exception('No median has been computed. Call run() before calling get_num_itrs().')
  507. return self._itrs
  508. def get_num_times_order_decreased(self):
  509. if not self._median_available():
  510. raise Exception('No median has been computed. Call run() before calling get_num_times_order_decreased().')
  511. return self._num_decrease_order
  512. def get_num_times_order_increased(self):
  513. if not self._median_available():
  514. raise Exception('No median has been computed. Call run() before calling get_num_times_order_increased().')
  515. return self._num_increase_order
  516. def get_num_converged_descents(self):
  517. if not self._median_available():
  518. raise Exception('No median has been computed. Call run() before calling get_num_converged_descents().')
  519. return self._num_converged_descents
  520. def get_ged_env(self):
  521. return self._ged_env
  522. def _set_default_options(self):
  523. self._init_type = 'RANDOM'
  524. self._num_random_inits = 10
  525. self._desired_num_random_inits = 10
  526. self._use_real_randomness = True
  527. self._seed = 0
  528. self._parallel = True
  529. self._update_order = True
  530. self._sort_graphs = True
  531. self._refine = True
  532. self._time_limit_in_sec = 0
  533. self._epsilon = 0.0001
  534. self._max_itrs = 100
  535. self._max_itrs_without_update = 3
  536. self._num_inits_increase_order = 10
  537. self._init_type_increase_order = 'K-MEANS++'
  538. self._max_itrs_increase_order = 10
  539. self._print_to_stdout = 2
  540. self._label_names = {}
  541. def _construct_initial_medians(self, graph_ids, timer, initial_medians):
  542. # Print information about current iteration.
  543. if self._print_to_stdout == 2:
  544. print('\n===========================================================')
  545. print('Constructing initial median(s).')
  546. print('-----------------------------------------------------------')
  547. # Compute or sample the initial median(s).
  548. initial_medians.clear()
  549. if self._init_type == 'MEDOID':
  550. self._compute_medoid(graph_ids, timer, initial_medians)
  551. elif self._init_type == 'MAX':
  552. pass # @todo
  553. # compute_max_order_graph_(graph_ids, initial_medians)
  554. elif self._init_type == 'MIN':
  555. pass # @todo
  556. # compute_min_order_graph_(graph_ids, initial_medians)
  557. elif self._init_type == 'MEAN':
  558. pass # @todo
  559. # compute_mean_order_graph_(graph_ids, initial_medians)
  560. else:
  561. pass # @todo
  562. # sample_initial_medians_(graph_ids, initial_medians)
  563. # Print information about current iteration.
  564. if self._print_to_stdout == 2:
  565. print('===========================================================')
  566. def _compute_medoid(self, graph_ids, timer, initial_medians):
  567. # Use method selected for initialization phase.
  568. self._ged_env.set_method(self._init_method, self._init_options)
  569. # Compute the medoid.
  570. if self._parallel:
  571. # @todo: notice when parallel self._ged_env is not modified.
  572. sum_of_distances_list = [np.inf] * len(graph_ids)
  573. len_itr = len(graph_ids)
  574. itr = zip(graph_ids, range(0, len(graph_ids)))
  575. n_jobs = multiprocessing.cpu_count()
  576. if len_itr < 100 * n_jobs:
  577. chunksize = int(len_itr / n_jobs) + 1
  578. else:
  579. chunksize = 100
  580. def init_worker(ged_env_toshare):
  581. global G_ged_env
  582. G_ged_env = ged_env_toshare
  583. do_fun = partial(_compute_medoid_parallel, graph_ids, self._sort_graphs)
  584. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self._ged_env,))
  585. if self._print_to_stdout == 2:
  586. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  587. desc='Computing medoid', file=sys.stdout)
  588. else:
  589. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  590. for i, dis in iterator:
  591. sum_of_distances_list[i] = dis
  592. pool.close()
  593. pool.join()
  594. medoid_id = np.argmin(sum_of_distances_list)
  595. best_sum_of_distances = sum_of_distances_list[medoid_id]
  596. initial_medians.append(self._ged_env.get_nx_graph(medoid_id)) # @todo
  597. else:
  598. # Print information about current iteration.
  599. if self._print_to_stdout == 2:
  600. progress = tqdm(desc='Computing medoid', total=len(graph_ids), file=sys.stdout)
  601. medoid_id = graph_ids[0]
  602. best_sum_of_distances = np.inf
  603. for g_id in graph_ids:
  604. if timer.expired():
  605. self._state = AlgorithmState.CALLED
  606. break
  607. nb_nodes_g = self._ged_env.get_graph_num_nodes(g_id)
  608. sum_of_distances = 0
  609. for h_id in graph_ids: # @todo: this can be faster, only a half is needed.
  610. nb_nodes_h = self._ged_env.get_graph_num_nodes(h_id)
  611. if nb_nodes_g <= nb_nodes_h or not self._sort_graphs:
  612. self._ged_env.run_method(g_id, h_id) # @todo
  613. sum_of_distances += self._ged_env.get_upper_bound(g_id, h_id)
  614. else:
  615. self._ged_env.run_method(h_id, g_id)
  616. sum_of_distances += self._ged_env.get_upper_bound(h_id, g_id)
  617. if sum_of_distances < best_sum_of_distances:
  618. best_sum_of_distances = sum_of_distances
  619. medoid_id = g_id
  620. # Print information about current iteration.
  621. if self._print_to_stdout == 2:
  622. progress.update(1)
  623. initial_medians.append(self._ged_env.get_nx_graph(medoid_id)) # @todo
  624. # Print information about current iteration.
  625. if self._print_to_stdout == 2:
  626. print('\n')
  627. def _compute_init_node_maps(self, graph_ids, gen_median_id):
  628. # Compute node maps and sum of distances for initial median.
  629. if self._parallel:
  630. # @todo: notice when parallel self._ged_env is not modified.
  631. self._sum_of_distances = 0
  632. self._node_maps_from_median.clear()
  633. sum_of_distances_list = [0] * len(graph_ids)
  634. len_itr = len(graph_ids)
  635. itr = graph_ids
  636. n_jobs = multiprocessing.cpu_count()
  637. if len_itr < 100 * n_jobs:
  638. chunksize = int(len_itr / n_jobs) + 1
  639. else:
  640. chunksize = 100
  641. def init_worker(ged_env_toshare):
  642. global G_ged_env
  643. G_ged_env = ged_env_toshare
  644. nb_nodes_median = self._ged_env.get_graph_num_nodes(gen_median_id)
  645. do_fun = partial(_compute_init_node_maps_parallel, gen_median_id, self._sort_graphs, nb_nodes_median)
  646. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self._ged_env,))
  647. if self._print_to_stdout == 2:
  648. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  649. desc='Computing initial node maps', file=sys.stdout)
  650. else:
  651. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  652. for g_id, sod, node_maps in iterator:
  653. sum_of_distances_list[g_id] = sod
  654. self._node_maps_from_median[g_id] = node_maps
  655. pool.close()
  656. pool.join()
  657. self._sum_of_distances = np.sum(sum_of_distances_list)
  658. # xxx = self._node_maps_from_median
  659. else:
  660. # Print information about current iteration.
  661. if self._print_to_stdout == 2:
  662. progress = tqdm(desc='Computing initial node maps', total=len(graph_ids), file=sys.stdout)
  663. self._sum_of_distances = 0
  664. self._node_maps_from_median.clear()
  665. nb_nodes_median = self._ged_env.get_graph_num_nodes(gen_median_id)
  666. for graph_id in graph_ids:
  667. nb_nodes_g = self._ged_env.get_graph_num_nodes(graph_id)
  668. if nb_nodes_median <= nb_nodes_g or not self._sort_graphs:
  669. self._ged_env.run_method(gen_median_id, graph_id)
  670. self._node_maps_from_median[graph_id] = self._ged_env.get_node_map(gen_median_id, graph_id)
  671. else:
  672. self._ged_env.run_method(graph_id, gen_median_id)
  673. node_map_tmp = self._ged_env.get_node_map(graph_id, gen_median_id)
  674. node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map
  675. self._node_maps_from_median[graph_id] = node_map_tmp
  676. # print(self._node_maps_from_median[graph_id])
  677. self._sum_of_distances += self._node_maps_from_median[graph_id].induced_cost()
  678. # print(self._sum_of_distances)
  679. # Print information about current iteration.
  680. if self._print_to_stdout == 2:
  681. progress.update(1)
  682. # Print information about current iteration.
  683. if self._print_to_stdout == 2:
  684. print('\n')
  685. def _termination_criterion_met(self, converged, timer, itr, itrs_without_update):
  686. if timer.expired() or (itr >= self._max_itrs if self._max_itrs >= 0 else False):
  687. if self._state == AlgorithmState.TERMINATED:
  688. self._state = AlgorithmState.INITIALIZED
  689. return True
  690. return converged or (itrs_without_update > self._max_itrs_without_update if self._max_itrs_without_update >= 0 else False)
  691. def _update_median(self, graphs, median):
  692. # Print information about current iteration.
  693. if self._print_to_stdout == 2:
  694. print('Updating median: ', end='')
  695. # Store copy of the old median.
  696. old_median = median.copy() # @todo: this is just a shallow copy.
  697. # Update the node labels.
  698. if self._labeled_nodes:
  699. self._update_node_labels(graphs, median)
  700. # Update the edges and their labels.
  701. self._update_edges(graphs, median)
  702. # Print information about current iteration.
  703. if self._print_to_stdout == 2:
  704. print('done.')
  705. return not self._are_graphs_equal(median, old_median)
  706. def _update_node_labels(self, graphs, median):
  707. # print('----------------------------')
  708. # Print information about current iteration.
  709. if self._print_to_stdout == 2:
  710. print('nodes ... ', end='')
  711. # Iterate through all nodes of the median.
  712. for i in range(0, nx.number_of_nodes(median)):
  713. # print('i: ', i)
  714. # Collect the labels of the substituted nodes.
  715. node_labels = []
  716. for graph_id, graph in graphs.items():
  717. # print('graph_id: ', graph_id)
  718. # print(self._node_maps_from_median[graph_id])
  719. # print(self._node_maps_from_median[graph_id].forward_map, self._node_maps_from_median[graph_id].backward_map)
  720. k = self._node_maps_from_median[graph_id].image(i)
  721. # print('k: ', k)
  722. if k != np.inf:
  723. node_labels.append(graph.nodes[k])
  724. # Compute the median label and update the median.
  725. if len(node_labels) > 0:
  726. # median_label = self._ged_env.get_median_node_label(node_labels)
  727. median_label = self._get_median_node_label(node_labels)
  728. if self._ged_env.get_node_rel_cost(median.nodes[i], median_label) > self._epsilon:
  729. nx.set_node_attributes(median, {i: median_label})
  730. def _update_edges(self, graphs, median):
  731. # Print information about current iteration.
  732. if self._print_to_stdout == 2:
  733. print('edges ... ', end='')
  734. # # Clear the adjacency lists of the median and reset number of edges to 0.
  735. # median_edges = list(median.edges)
  736. # for (head, tail) in median_edges:
  737. # median.remove_edge(head, tail)
  738. # @todo: what if edge is not labeled?
  739. # Iterate through all possible edges (i,j) of the median.
  740. for i in range(0, nx.number_of_nodes(median)):
  741. for j in range(i + 1, nx.number_of_nodes(median)):
  742. # Collect the labels of the edges to which (i,j) is mapped by the node maps.
  743. edge_labels = []
  744. for graph_id, graph in graphs.items():
  745. k = self._node_maps_from_median[graph_id].image(i)
  746. l = self._node_maps_from_median[graph_id].image(j)
  747. if k != np.inf and l != np.inf:
  748. if graph.has_edge(k, l):
  749. edge_labels.append(graph.edges[(k, l)])
  750. # Compute the median edge label and the overall edge relabeling cost.
  751. rel_cost = 0
  752. median_label = self._ged_env.get_edge_label(1, to_dict=True)
  753. if median.has_edge(i, j):
  754. median_label = median.edges[(i, j)]
  755. if self._labeled_edges and len(edge_labels) > 0:
  756. new_median_label = self._get_median_edge_label(edge_labels)
  757. if self._ged_env.get_edge_rel_cost(median_label, new_median_label) > self._epsilon:
  758. median_label = new_median_label
  759. for edge_label in edge_labels:
  760. rel_cost += self._ged_env.get_edge_rel_cost(median_label, edge_label)
  761. # Update the median.
  762. if median.has_edge(i, j):
  763. median.remove_edge(i, j)
  764. if rel_cost < (self._edge_ins_cost + self._edge_del_cost) * len(edge_labels) - self._edge_del_cost * len(graphs):
  765. median.add_edge(i, j, **median_label)
  766. # else:
  767. # if median.has_edge(i, j):
  768. # median.remove_edge(i, j)
  769. def _update_node_maps(self):
  770. # Update the node maps.
  771. if self._parallel:
  772. # @todo: notice when parallel self._ged_env is not modified.
  773. node_maps_were_modified = False
  774. # xxx = self._node_maps_from_median.copy()
  775. len_itr = len(self._node_maps_from_median)
  776. itr = [item for item in self._node_maps_from_median.items()]
  777. n_jobs = multiprocessing.cpu_count()
  778. if len_itr < 100 * n_jobs:
  779. chunksize = int(len_itr / n_jobs) + 1
  780. else:
  781. chunksize = 100
  782. def init_worker(ged_env_toshare):
  783. global G_ged_env
  784. G_ged_env = ged_env_toshare
  785. nb_nodes_median = self._ged_env.get_graph_num_nodes(self._median_id)
  786. do_fun = partial(_update_node_maps_parallel, self._median_id, self._epsilon, self._sort_graphs, nb_nodes_median)
  787. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self._ged_env,))
  788. if self._print_to_stdout == 2:
  789. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  790. desc='Updating node maps', file=sys.stdout)
  791. else:
  792. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  793. for g_id, node_map, nm_modified in iterator:
  794. self._node_maps_from_median[g_id] = node_map
  795. if nm_modified:
  796. node_maps_were_modified = True
  797. pool.close()
  798. pool.join()
  799. # yyy = self._node_maps_from_median.copy()
  800. else:
  801. # Print information about current iteration.
  802. if self._print_to_stdout == 2:
  803. progress = tqdm(desc='Updating node maps', total=len(self._node_maps_from_median), file=sys.stdout)
  804. node_maps_were_modified = False
  805. nb_nodes_median = self._ged_env.get_graph_num_nodes(self._median_id)
  806. for graph_id, node_map in self._node_maps_from_median.items():
  807. nb_nodes_g = self._ged_env.get_graph_num_nodes(graph_id)
  808. if nb_nodes_median <= nb_nodes_g or not self._sort_graphs:
  809. self._ged_env.run_method(self._median_id, graph_id)
  810. if self._ged_env.get_upper_bound(self._median_id, graph_id) < node_map.induced_cost() - self._epsilon:
  811. # xxx = self._node_maps_from_median[graph_id]
  812. self._node_maps_from_median[graph_id] = self._ged_env.get_node_map(self._median_id, graph_id)
  813. node_maps_were_modified = True
  814. else:
  815. self._ged_env.run_method(graph_id, self._median_id)
  816. if self._ged_env.get_upper_bound(graph_id, self._median_id) < node_map.induced_cost() - self._epsilon:
  817. node_map_tmp = self._ged_env.get_node_map(graph_id, self._median_id)
  818. node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map
  819. self._node_maps_from_median[graph_id] = node_map_tmp
  820. node_maps_were_modified = True
  821. # Print information about current iteration.
  822. if self._print_to_stdout == 2:
  823. progress.update(1)
  824. # Print information about current iteration.
  825. if self._print_to_stdout == 2:
  826. print('\n')
  827. # Return true if the node maps were modified.
  828. return node_maps_were_modified
  829. def _decrease_order(self, graphs, median):
  830. # Print information about current iteration
  831. if self._print_to_stdout == 2:
  832. print('Trying to decrease order: ... ', end='')
  833. if nx.number_of_nodes(median) <= 1:
  834. if self._print_to_stdout == 2:
  835. print('median graph has only 1 node, skip decrease.')
  836. return False
  837. # Initialize ID of the node that is to be deleted.
  838. id_deleted_node = [None] # @todo: or np.inf
  839. decreased_order = False
  840. # Decrease the order as long as the best deletion delta is negative.
  841. while self._compute_best_deletion_delta(graphs, median, id_deleted_node) < -self._epsilon:
  842. decreased_order = True
  843. self._delete_node_from_median(id_deleted_node[0], median)
  844. if nx.number_of_nodes(median) <= 1:
  845. if self._print_to_stdout == 2:
  846. print('decrease stopped because median graph remains only 1 node. ', end='')
  847. break
  848. # Print information about current iteration.
  849. if self._print_to_stdout == 2:
  850. print('done.')
  851. # Return true iff the order was decreased.
  852. return decreased_order
  853. def _compute_best_deletion_delta(self, graphs, median, id_deleted_node):
  854. best_delta = 0.0
  855. # Determine node that should be deleted (if any).
  856. for i in range(0, nx.number_of_nodes(median)):
  857. # Compute cost delta.
  858. delta = 0.0
  859. for graph_id, graph in graphs.items():
  860. k = self._node_maps_from_median[graph_id].image(i)
  861. if k == np.inf:
  862. delta -= self._node_del_cost
  863. else:
  864. delta += self._node_ins_cost - self._ged_env.get_node_rel_cost(median.nodes[i], graph.nodes[k])
  865. for j, j_label in median[i].items():
  866. l = self._node_maps_from_median[graph_id].image(j)
  867. if k == np.inf or l == np.inf:
  868. delta -= self._edge_del_cost
  869. elif not graph.has_edge(k, l):
  870. delta -= self._edge_del_cost
  871. else:
  872. delta += self._edge_ins_cost - self._ged_env.get_edge_rel_cost(j_label, graph.edges[(k, l)])
  873. # Update best deletion delta.
  874. if delta < best_delta - self._epsilon:
  875. best_delta = delta
  876. id_deleted_node[0] = i
  877. # id_deleted_node[0] = 3 # @todo:
  878. return best_delta
  879. def _delete_node_from_median(self, id_deleted_node, median):
  880. # Update the median.
  881. mapping = {}
  882. for i in range(0, nx.number_of_nodes(median)):
  883. if i != id_deleted_node:
  884. new_i = (i if i < id_deleted_node else (i - 1))
  885. mapping[i] = new_i
  886. median.remove_node(id_deleted_node)
  887. nx.relabel_nodes(median, mapping, copy=False)
  888. # Update the node maps.
  889. # xxx = self._node_maps_from_median
  890. for key, node_map in self._node_maps_from_median.items():
  891. new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes())
  892. is_unassigned_target_node = [True] * node_map.num_target_nodes()
  893. for i in range(0, nx.number_of_nodes(median) + 1):
  894. if i != id_deleted_node:
  895. new_i = (i if i < id_deleted_node else (i - 1))
  896. k = node_map.image(i)
  897. new_node_map.add_assignment(new_i, k)
  898. if k != np.inf:
  899. is_unassigned_target_node[k] = False
  900. for k in range(0, node_map.num_target_nodes()):
  901. if is_unassigned_target_node[k]:
  902. new_node_map.add_assignment(np.inf, k)
  903. # print(self._node_maps_from_median[key].forward_map, self._node_maps_from_median[key].backward_map)
  904. # print(new_node_map.forward_map, new_node_map.backward_map
  905. self._node_maps_from_median[key] = new_node_map
  906. # Increase overall number of decreases.
  907. self._num_decrease_order += 1
  908. def _increase_order(self, graphs, median):
  909. # Print information about current iteration.
  910. if self._print_to_stdout == 2:
  911. print('Trying to increase order: ... ', end='')
  912. # Initialize the best configuration and the best label of the node that is to be inserted.
  913. best_config = {}
  914. best_label = self._ged_env.get_node_label(1, to_dict=True)
  915. increased_order = False
  916. # Increase the order as long as the best insertion delta is negative.
  917. while self._compute_best_insertion_delta(graphs, best_config, best_label) < - self._epsilon:
  918. increased_order = True
  919. self._add_node_to_median(best_config, best_label, median)
  920. # Print information about current iteration.
  921. if self._print_to_stdout == 2:
  922. print('done.')
  923. # Return true iff the order was increased.
  924. return increased_order
  925. def _compute_best_insertion_delta(self, graphs, best_config, best_label):
  926. # Construct sets of inserted nodes.
  927. no_inserted_node = True
  928. inserted_nodes = {}
  929. for graph_id, graph in graphs.items():
  930. inserted_nodes[graph_id] = []
  931. best_config[graph_id] = np.inf
  932. for k in range(nx.number_of_nodes(graph)):
  933. if self._node_maps_from_median[graph_id].pre_image(k) == np.inf:
  934. no_inserted_node = False
  935. inserted_nodes[graph_id].append((k, tuple(item for item in graph.nodes[k].items()))) # @todo: can order of label names be garantteed?
  936. # Return 0.0 if no node is inserted in any of the graphs.
  937. if no_inserted_node:
  938. return 0.0
  939. # Compute insertion configuration, label, and delta.
  940. best_delta = 0.0 # @todo
  941. if len(self._label_names['node_labels']) == 0 and len(self._label_names['node_attrs']) == 0: # @todo
  942. best_delta = self._compute_insertion_delta_unlabeled(inserted_nodes, best_config, best_label)
  943. elif len(self._label_names['node_labels']) > 0: # self._constant_node_costs:
  944. best_delta = self._compute_insertion_delta_constant(inserted_nodes, best_config, best_label)
  945. else:
  946. best_delta = self._compute_insertion_delta_generic(inserted_nodes, best_config, best_label)
  947. # Return the best delta.
  948. return best_delta
  949. def _compute_insertion_delta_unlabeled(self, inserted_nodes, best_config, best_label): # @todo: go through and test.
  950. # Construct the nest configuration and compute its insertion delta.
  951. best_delta = 0.0
  952. best_config.clear()
  953. for graph_id, node_set in inserted_nodes.items():
  954. if len(node_set) == 0:
  955. best_config[graph_id] = np.inf
  956. best_delta += self._node_del_cost
  957. else:
  958. best_config[graph_id] = node_set[0][0]
  959. best_delta -= self._node_ins_cost
  960. # Return the best insertion delta.
  961. return best_delta
  962. def _compute_insertion_delta_constant(self, inserted_nodes, best_config, best_label):
  963. # Construct histogram and inverse label maps.
  964. hist = {}
  965. inverse_label_maps = {}
  966. for graph_id, node_set in inserted_nodes.items():
  967. inverse_label_maps[graph_id] = {}
  968. for node in node_set:
  969. k = node[0]
  970. label = node[1]
  971. if label not in inverse_label_maps[graph_id]:
  972. inverse_label_maps[graph_id][label] = k
  973. if label not in hist:
  974. hist[label] = 1
  975. else:
  976. hist[label] += 1
  977. # Determine the best label.
  978. best_count = 0
  979. for key, val in hist.items():
  980. if val > best_count:
  981. best_count = val
  982. best_label_tuple = key
  983. # get best label.
  984. best_label.clear()
  985. for key, val in best_label_tuple:
  986. best_label[key] = val
  987. # Construct the best configuration and compute its insertion delta.
  988. best_config.clear()
  989. best_delta = 0.0
  990. node_rel_cost = self._ged_env.get_node_rel_cost(self._ged_env.get_node_label(1, to_dict=False), self._ged_env.get_node_label(2, to_dict=False))
  991. triangle_ineq_holds = (node_rel_cost <= self._node_del_cost + self._node_ins_cost)
  992. for graph_id, _ in inserted_nodes.items():
  993. if best_label_tuple in inverse_label_maps[graph_id]:
  994. best_config[graph_id] = inverse_label_maps[graph_id][best_label_tuple]
  995. best_delta -= self._node_ins_cost
  996. elif triangle_ineq_holds and not len(inserted_nodes[graph_id]) == 0:
  997. best_config[graph_id] = inserted_nodes[graph_id][0][0]
  998. best_delta += node_rel_cost - self._node_ins_cost
  999. else:
  1000. best_config[graph_id] = np.inf
  1001. best_delta += self._node_del_cost
  1002. # Return the best insertion delta.
  1003. return best_delta
  1004. def _compute_insertion_delta_generic(self, inserted_nodes, best_config, best_label):
  1005. # Collect all node labels of inserted nodes.
  1006. node_labels = []
  1007. for _, node_set in inserted_nodes.items():
  1008. for node in node_set:
  1009. node_labels.append(node[1])
  1010. # Compute node label medians that serve as initial solutions for block gradient descent.
  1011. initial_node_labels = []
  1012. self._compute_initial_node_labels(node_labels, initial_node_labels)
  1013. # Determine best insertion configuration, label, and delta via parallel block gradient descent from all initial node labels.
  1014. best_delta = 0.0
  1015. for node_label in initial_node_labels:
  1016. # Construct local configuration.
  1017. config = {}
  1018. for graph_id, _ in inserted_nodes.items():
  1019. config[graph_id] = tuple((np.inf, self._ged_env.get_node_label(1, to_dict=False)))
  1020. # Run block gradient descent.
  1021. converged = False
  1022. itr = 0
  1023. while not self._insertion_termination_criterion_met(converged, itr):
  1024. converged = not self._update_config(node_label, inserted_nodes, config, node_labels)
  1025. node_label_dict = dict(node_label)
  1026. converged = converged and (not self._update_node_label([dict(item) for item in node_labels], node_label_dict)) # @todo: the dict is tupled again in the function, can be better.
  1027. node_label = tuple(item for item in node_label_dict.items()) # @todo: watch out: initial_node_labels[i] is not modified here.
  1028. itr += 1
  1029. # Compute insertion delta of converged solution.
  1030. delta = 0.0
  1031. for _, node in config.items():
  1032. if node[0] == np.inf:
  1033. delta += self._node_del_cost
  1034. else:
  1035. delta += self._ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self._node_ins_cost
  1036. # Update best delta and global configuration if improvement has been found.
  1037. if delta < best_delta - self._epsilon:
  1038. best_delta = delta
  1039. best_label.clear()
  1040. for key, val in node_label:
  1041. best_label[key] = val
  1042. best_config.clear()
  1043. for graph_id, val in config.items():
  1044. best_config[graph_id] = val[0]
  1045. # Return the best delta.
  1046. return best_delta
  1047. def _compute_initial_node_labels(self, node_labels, median_labels):
  1048. median_labels.clear()
  1049. if self._use_real_randomness: # @todo: may not work if parallelized.
  1050. rng = np.random.randint(0, high=2**32 - 1, size=1)
  1051. urng = np.random.RandomState(seed=rng[0])
  1052. else:
  1053. urng = np.random.RandomState(seed=self._seed)
  1054. # Generate the initial node label medians.
  1055. if self._init_type_increase_order == 'K-MEANS++':
  1056. # Use k-means++ heuristic to generate the initial node label medians.
  1057. already_selected = [False] * len(node_labels)
  1058. selected_label_id = urng.randint(low=0, high=len(node_labels), size=1)[0] # c++ test: 23
  1059. median_labels.append(node_labels[selected_label_id])
  1060. already_selected[selected_label_id] = True
  1061. # xxx = [41, 0, 18, 9, 6, 14, 21, 25, 33] for c++ test
  1062. # iii = 0 for c++ test
  1063. while len(median_labels) < self._num_inits_increase_order:
  1064. weights = [np.inf] * len(node_labels)
  1065. for label_id in range(0, len(node_labels)):
  1066. if already_selected[label_id]:
  1067. weights[label_id] = 0
  1068. continue
  1069. for label in median_labels:
  1070. weights[label_id] = min(weights[label_id], self._ged_env.get_node_rel_cost(dict(label), dict(node_labels[label_id])))
  1071. # get non-zero weights.
  1072. weights_p, idx_p = [], []
  1073. for i, w in enumerate(weights):
  1074. if w != 0:
  1075. weights_p.append(w)
  1076. idx_p.append(i)
  1077. if len(weights_p) > 0:
  1078. p = np.array(weights_p) / np.sum(weights_p)
  1079. selected_label_id = urng.choice(range(0, len(weights_p)), size=1, p=p)[0] # for c++ test: xxx[iii]
  1080. selected_label_id = idx_p[selected_label_id]
  1081. # iii += 1 for c++ test
  1082. median_labels.append(node_labels[selected_label_id])
  1083. already_selected[selected_label_id] = True
  1084. else: # skip the loop when all node_labels are selected. This happens when len(node_labels) <= self._num_inits_increase_order.
  1085. break
  1086. else:
  1087. # Compute the initial node medians as the medians of randomly generated clusters of (roughly) equal size.
  1088. # @todo: go through and test.
  1089. shuffled_node_labels = [np.inf] * len(node_labels) #@todo: random?
  1090. # @todo: std::shuffle(shuffled_node_labels.begin(), shuffled_node_labels.end(), urng);?
  1091. cluster_size = len(node_labels) / self._num_inits_increase_order
  1092. pos = 0.0
  1093. cluster = []
  1094. while len(median_labels) < self._num_inits_increase_order - 1:
  1095. while pos < (len(median_labels) + 1) * cluster_size:
  1096. cluster.append(shuffled_node_labels[pos])
  1097. pos += 1
  1098. median_labels.append(self._get_median_node_label(cluster))
  1099. cluster.clear()
  1100. while pos < len(shuffled_node_labels):
  1101. pos += 1
  1102. cluster.append(shuffled_node_labels[pos])
  1103. median_labels.append(self._get_median_node_label(cluster))
  1104. cluster.clear()
  1105. # Run Lloyd's Algorithm.
  1106. converged = False
  1107. closest_median_ids = [np.inf] * len(node_labels)
  1108. clusters = [[] for _ in range(len(median_labels))]
  1109. itr = 1
  1110. while not self._insertion_termination_criterion_met(converged, itr):
  1111. converged = not self._update_clusters(node_labels, median_labels, closest_median_ids)
  1112. if not converged:
  1113. for cluster in clusters:
  1114. cluster.clear()
  1115. for label_id in range(0, len(node_labels)):
  1116. clusters[closest_median_ids[label_id]].append(node_labels[label_id])
  1117. for cluster_id in range(0, len(clusters)):
  1118. node_label = dict(median_labels[cluster_id])
  1119. self._update_node_label([dict(item) for item in clusters[cluster_id]], node_label) # @todo: the dict is tupled again in the function, can be better.
  1120. median_labels[cluster_id] = tuple(item for item in node_label.items())
  1121. itr += 1
  1122. def _insertion_termination_criterion_met(self, converged, itr):
  1123. return converged or (itr >= self._max_itrs_increase_order if self._max_itrs_increase_order > 0 else False)
  1124. def _update_config(self, node_label, inserted_nodes, config, node_labels):
  1125. # Determine the best configuration.
  1126. config_modified = False
  1127. for graph_id, node_set in inserted_nodes.items():
  1128. best_assignment = config[graph_id]
  1129. best_cost = 0.0
  1130. if best_assignment[0] == np.inf:
  1131. best_cost = self._node_del_cost
  1132. else:
  1133. best_cost = self._ged_env.get_node_rel_cost(dict(node_label), dict(best_assignment[1])) - self._node_ins_cost
  1134. for node in node_set:
  1135. cost = self._ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self._node_ins_cost
  1136. if cost < best_cost - self._epsilon:
  1137. best_cost = cost
  1138. best_assignment = node
  1139. config_modified = True
  1140. if self._node_del_cost < best_cost - self._epsilon:
  1141. best_cost = self._node_del_cost
  1142. best_assignment = tuple((np.inf, best_assignment[1]))
  1143. config_modified = True
  1144. config[graph_id] = best_assignment
  1145. # Collect the node labels contained in the best configuration.
  1146. node_labels.clear()
  1147. for key, val in config.items():
  1148. if val[0] != np.inf:
  1149. node_labels.append(val[1])
  1150. # Return true if the configuration was modified.
  1151. return config_modified
  1152. def _update_node_label(self, node_labels, node_label):
  1153. if len(node_labels) == 0: # @todo: check if this is the correct solution. Especially after calling _update_config().
  1154. return False
  1155. new_node_label = self._get_median_node_label(node_labels)
  1156. if self._ged_env.get_node_rel_cost(new_node_label, node_label) > self._epsilon:
  1157. node_label.clear()
  1158. for key, val in new_node_label.items():
  1159. node_label[key] = val
  1160. return True
  1161. return False
  1162. def _update_clusters(self, node_labels, median_labels, closest_median_ids):
  1163. # Determine the closest median for each node label.
  1164. clusters_modified = False
  1165. for label_id in range(0, len(node_labels)):
  1166. closest_median_id = np.inf
  1167. dist_to_closest_median = np.inf
  1168. for median_id in range(0, len(median_labels)):
  1169. dist_to_median = self._ged_env.get_node_rel_cost(dict(median_labels[median_id]), dict(node_labels[label_id]))
  1170. if dist_to_median < dist_to_closest_median - self._epsilon:
  1171. dist_to_closest_median = dist_to_median
  1172. closest_median_id = median_id
  1173. if closest_median_id != closest_median_ids[label_id]:
  1174. closest_median_ids[label_id] = closest_median_id
  1175. clusters_modified = True
  1176. # Return true if the clusters were modified.
  1177. return clusters_modified
  1178. def _add_node_to_median(self, best_config, best_label, median):
  1179. # Update the median.
  1180. nb_nodes_median = nx.number_of_nodes(median)
  1181. median.add_node(nb_nodes_median, **best_label)
  1182. # Update the node maps.
  1183. for graph_id, node_map in self._node_maps_from_median.items():
  1184. node_map_as_rel = []
  1185. node_map.as_relation(node_map_as_rel)
  1186. new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes())
  1187. for assignment in node_map_as_rel:
  1188. new_node_map.add_assignment(assignment[0], assignment[1])
  1189. new_node_map.add_assignment(nx.number_of_nodes(median) - 1, best_config[graph_id])
  1190. self._node_maps_from_median[graph_id] = new_node_map
  1191. # Increase overall number of increases.
  1192. self._num_increase_order += 1
  1193. def _are_graphs_equal(self, g1, g2):
  1194. """
  1195. Check if the two graphs are equal.
  1196. Parameters
  1197. ----------
  1198. g1 : NetworkX graph object
  1199. Graph 1 to be compared.
  1200. g2 : NetworkX graph object
  1201. Graph 2 to be compared.
  1202. Returns
  1203. -------
  1204. bool
  1205. True if the two graph are equal.
  1206. Notes
  1207. -----
  1208. This is not an identical check. Here the two graphs are equal if and only if their original_node_ids, nodes, all node labels, edges and all edge labels are equal. This function is specifically designed for class `MedianGraphEstimator` and should not be used elsewhere.
  1209. """
  1210. # check original node ids.
  1211. if not g1.graph['original_node_ids'] == g2.graph['original_node_ids']:
  1212. return False # @todo: why check this?
  1213. # check nodes.
  1214. nlist1 = [n for n in g1.nodes(data=True)] # @todo: shallow?
  1215. nlist2 = [n for n in g2.nodes(data=True)]
  1216. if not nlist1 == nlist2:
  1217. return False
  1218. # check edges.
  1219. elist1 = [n for n in g1.edges(data=True)]
  1220. elist2 = [n for n in g2.edges(data=True)]
  1221. if not elist1 == elist2:
  1222. return False
  1223. return True
  1224. def compute_my_cost(g, h, node_map):
  1225. cost = 0.0
  1226. for node in g.nodes:
  1227. cost += 0
  1228. def set_label_names(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  1229. self._label_names = {'node_labels': node_labels, 'edge_labels': edge_labels,
  1230. 'node_attrs': node_attrs, 'edge_attrs': edge_attrs}
  1231. def _get_median_node_label(self, node_labels):
  1232. if len(self._label_names['node_labels']) > 0:
  1233. return self._get_median_label_symbolic(node_labels)
  1234. elif len(self._label_names['node_attrs']) > 0:
  1235. return self._get_median_label_nonsymbolic(node_labels)
  1236. else:
  1237. raise Exception('Node label names are not given.')
  1238. def _get_median_edge_label(self, edge_labels):
  1239. if len(self._label_names['edge_labels']) > 0:
  1240. return self._get_median_label_symbolic(edge_labels)
  1241. elif len(self._label_names['edge_attrs']) > 0:
  1242. return self._get_median_label_nonsymbolic(edge_labels)
  1243. else:
  1244. raise Exception('Edge label names are not given.')
  1245. def _get_median_label_symbolic(self, labels):
  1246. # Construct histogram.
  1247. hist = {}
  1248. for label in labels:
  1249. label = tuple([kv for kv in label.items()]) # @todo: this may be slow.
  1250. if label not in hist:
  1251. hist[label] = 1
  1252. else:
  1253. hist[label] += 1
  1254. # Return the label that appears most frequently.
  1255. best_count = 0
  1256. median_label = {}
  1257. for label, count in hist.items():
  1258. if count > best_count:
  1259. best_count = count
  1260. median_label = {kv[0]: kv[1] for kv in label}
  1261. return median_label
  1262. def _get_median_label_nonsymbolic(self, labels):
  1263. if len(labels) == 0:
  1264. return {} # @todo
  1265. else:
  1266. # Transform the labels into coordinates and compute mean label as initial solution.
  1267. labels_as_coords = []
  1268. sums = {}
  1269. for key, val in labels[0].items():
  1270. sums[key] = 0
  1271. for label in labels:
  1272. coords = {}
  1273. for key, val in label.items():
  1274. label_f = float(val)
  1275. sums[key] += label_f
  1276. coords[key] = label_f
  1277. labels_as_coords.append(coords)
  1278. median = {}
  1279. for key, val in sums.items():
  1280. median[key] = val / len(labels)
  1281. # Run main loop of Weiszfeld's Algorithm.
  1282. epsilon = 0.0001
  1283. delta = 1.0
  1284. num_itrs = 0
  1285. all_equal = False
  1286. while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)):
  1287. numerator = {}
  1288. for key, val in sums.items():
  1289. numerator[key] = 0
  1290. denominator = 0
  1291. for label_as_coord in labels_as_coords:
  1292. norm = 0
  1293. for key, val in label_as_coord.items():
  1294. norm += (val - median[key]) ** 2
  1295. norm = np.sqrt(norm)
  1296. if norm > 0:
  1297. for key, val in label_as_coord.items():
  1298. numerator[key] += val / norm
  1299. denominator += 1.0 / norm
  1300. if denominator == 0:
  1301. all_equal = True
  1302. else:
  1303. new_median = {}
  1304. delta = 0.0
  1305. for key, val in numerator.items():
  1306. this_median = val / denominator
  1307. new_median[key] = this_median
  1308. delta += np.abs(median[key] - this_median)
  1309. median = new_median
  1310. num_itrs += 1
  1311. # Transform the solution to strings and return it.
  1312. median_label = {}
  1313. for key, val in median.items():
  1314. median_label[key] = str(val)
  1315. return median_label
  1316. # def _get_median_edge_label_symbolic(self, edge_labels):
  1317. # pass
  1318. # def _get_median_edge_label_nonsymbolic(self, edge_labels):
  1319. # if len(edge_labels) == 0:
  1320. # return {}
  1321. # else:
  1322. # # Transform the labels into coordinates and compute mean label as initial solution.
  1323. # edge_labels_as_coords = []
  1324. # sums = {}
  1325. # for key, val in edge_labels[0].items():
  1326. # sums[key] = 0
  1327. # for edge_label in edge_labels:
  1328. # coords = {}
  1329. # for key, val in edge_label.items():
  1330. # label = float(val)
  1331. # sums[key] += label
  1332. # coords[key] = label
  1333. # edge_labels_as_coords.append(coords)
  1334. # median = {}
  1335. # for key, val in sums.items():
  1336. # median[key] = val / len(edge_labels)
  1337. #
  1338. # # Run main loop of Weiszfeld's Algorithm.
  1339. # epsilon = 0.0001
  1340. # delta = 1.0
  1341. # num_itrs = 0
  1342. # all_equal = False
  1343. # while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)):
  1344. # numerator = {}
  1345. # for key, val in sums.items():
  1346. # numerator[key] = 0
  1347. # denominator = 0
  1348. # for edge_label_as_coord in edge_labels_as_coords:
  1349. # norm = 0
  1350. # for key, val in edge_label_as_coord.items():
  1351. # norm += (val - median[key]) ** 2
  1352. # norm += np.sqrt(norm)
  1353. # if norm > 0:
  1354. # for key, val in edge_label_as_coord.items():
  1355. # numerator[key] += val / norm
  1356. # denominator += 1.0 / norm
  1357. # if denominator == 0:
  1358. # all_equal = True
  1359. # else:
  1360. # new_median = {}
  1361. # delta = 0.0
  1362. # for key, val in numerator.items():
  1363. # this_median = val / denominator
  1364. # new_median[key] = this_median
  1365. # delta += np.abs(median[key] - this_median)
  1366. # median = new_median
  1367. #
  1368. # num_itrs += 1
  1369. #
  1370. # # Transform the solution to ged::GXLLabel and return it.
  1371. # median_label = {}
  1372. # for key, val in median.items():
  1373. # median_label[key] = str(val)
  1374. # return median_label
  1375. def _compute_medoid_parallel(graph_ids, sort, itr):
  1376. g_id = itr[0]
  1377. i = itr[1]
  1378. # @todo: timer not considered here.
  1379. # if timer.expired():
  1380. # self._state = AlgorithmState.CALLED
  1381. # break
  1382. nb_nodes_g = G_ged_env.get_graph_num_nodes(g_id)
  1383. sum_of_distances = 0
  1384. for h_id in graph_ids:
  1385. nb_nodes_h = G_ged_env.get_graph_num_nodes(h_id)
  1386. if nb_nodes_g <= nb_nodes_h or not sort:
  1387. G_ged_env.run_method(g_id, h_id)
  1388. sum_of_distances += G_ged_env.get_upper_bound(g_id, h_id)
  1389. else:
  1390. G_ged_env.run_method(h_id, g_id)
  1391. sum_of_distances += G_ged_env.get_upper_bound(h_id, g_id)
  1392. return i, sum_of_distances
  1393. def _compute_init_node_maps_parallel(gen_median_id, sort, nb_nodes_median, itr):
  1394. graph_id = itr
  1395. nb_nodes_g = G_ged_env.get_graph_num_nodes(graph_id)
  1396. if nb_nodes_median <= nb_nodes_g or not sort:
  1397. G_ged_env.run_method(gen_median_id, graph_id)
  1398. node_map = G_ged_env.get_node_map(gen_median_id, graph_id)
  1399. # print(self._node_maps_from_median[graph_id])
  1400. else:
  1401. G_ged_env.run_method(graph_id, gen_median_id)
  1402. node_map = G_ged_env.get_node_map(graph_id, gen_median_id)
  1403. node_map.forward_map, node_map.backward_map = node_map.backward_map, node_map.forward_map
  1404. sum_of_distance = node_map.induced_cost()
  1405. # print(self._sum_of_distances)
  1406. return graph_id, sum_of_distance, node_map
  1407. def _update_node_maps_parallel(median_id, epsilon, sort, nb_nodes_median, itr):
  1408. graph_id = itr[0]
  1409. node_map = itr[1]
  1410. node_maps_were_modified = False
  1411. nb_nodes_g = G_ged_env.get_graph_num_nodes(graph_id)
  1412. if nb_nodes_median <= nb_nodes_g or not sort:
  1413. G_ged_env.run_method(median_id, graph_id)
  1414. if G_ged_env.get_upper_bound(median_id, graph_id) < node_map.induced_cost() - epsilon:
  1415. node_map = G_ged_env.get_node_map(median_id, graph_id)
  1416. node_maps_were_modified = True
  1417. else:
  1418. G_ged_env.run_method(graph_id, median_id)
  1419. if G_ged_env.get_upper_bound(graph_id, median_id) < node_map.induced_cost() - epsilon:
  1420. node_map = G_ged_env.get_node_map(graph_id, median_id)
  1421. node_map.forward_map, node_map.backward_map = node_map.backward_map, node_map.forward_map
  1422. node_maps_were_modified = True
  1423. return graph_id, node_map, node_maps_were_modified

A Python package for graph kernels, graph edit distances and graph pre-image problem.