You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_sp_symonly.py 2.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Dec 21 17:59:28 2018
  5. @author: ljia
  6. """
  7. import functools
  8. from libs import *
  9. import multiprocessing
  10. from gklearn.kernels.sp_sym import spkernel
  11. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  12. #from gklearn.utils.model_selection_precomputed import trial_do
  13. dslist = [
  14. {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  15. # node nsymb
  16. {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  17. # node symb/nsymb
  18. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  19. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  20. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  21. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  22. #
  23. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  24. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  25. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  26. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  27. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  28. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  29. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  30. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  31. ]
  32. estimator = spkernel
  33. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  34. param_grid_precomputed = {'node_kernels': [
  35. {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]}
  36. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  37. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  38. for ds in dslist:
  39. print()
  40. print(ds['name'])
  41. model_selection_for_precomputed_kernel(
  42. ds['dataset'],
  43. estimator,
  44. param_grid_precomputed,
  45. (param_grid[1] if ('task' in ds and ds['task']
  46. == 'regression') else param_grid[0]),
  47. (ds['task'] if 'task' in ds else 'classification'),
  48. NUM_TRIALS=30,
  49. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  50. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  51. ds_name=ds['name'],
  52. n_jobs=multiprocessing.cpu_count(),
  53. read_gm_from_file=False)
  54. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.