You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_spkernel.py 4.5 kB

5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283
  1. import functools
  2. from libs import *
  3. import multiprocessing
  4. from gklearn.kernels.spKernel import spkernel
  5. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  6. #from gklearn.utils.model_selection_precomputed import trial_do
  7. # datasets
  8. dslist = [
  9. # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  10. # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'},
  11. # # contains single node graph, node symb
  12. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
  13. # 'task': 'regression'}, # node symb
  14. # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb
  15. # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled
  16. # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb
  17. # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  18. # # node nsymb
  19. # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  20. # # node symb/nsymb
  21. # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  22. {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb
  23. {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb
  24. {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb
  25. # {'name': 'monoterpenoides', 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'}, # node/edge
  26. # {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'},
  27. # # node nsymb symb
  28. #
  29. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
  30. # # node/edge symb
  31. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  32. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  33. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  34. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  35. #
  36. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  37. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  38. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  39. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  40. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  41. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  42. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  43. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  44. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  45. # # not working below
  46. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  47. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  48. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  49. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  50. ]
  51. estimator = spkernel
  52. # hyper-parameters
  53. #gaussiankernel = functools.partial(gaussiankernel, gamma=0.5)
  54. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  55. param_grid_precomputed = {'node_kernels': [
  56. {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]}
  57. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  58. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  59. # for each dataset, do model selection.
  60. for ds in dslist:
  61. print()
  62. print(ds['name'])
  63. model_selection_for_precomputed_kernel(
  64. ds['dataset'],
  65. estimator,
  66. param_grid_precomputed,
  67. (param_grid[1] if ('task' in ds and ds['task']
  68. == 'regression') else param_grid[0]),
  69. (ds['task'] if 'task' in ds else 'classification'),
  70. NUM_TRIALS=30,
  71. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  72. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  73. ds_name=ds['name'],
  74. n_jobs=multiprocessing.cpu_count(),
  75. # n_jobs=7,
  76. read_gm_from_file=False,
  77. verbose=True)
  78. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.