|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "Acyclic\n",
- "\n",
- "--- This is a regression problem ---\n",
- "\n",
- "\n",
- "1. Loading dataset from file...\n",
- "\n",
- "2. Calculating gram matrices. This could take a while...\n",
- "getting canonkeys: 183it [00:00, 2869.32it/s]\n",
- "calculating kernels: 16836it [00:00, 289967.90it/s]\n",
- "\n",
- " --- treelet kernel matrix of size 183 built in 0.2736480236053467 seconds ---\n",
- "\n",
- "the gram matrix with parameters {'sub_kernel': <function gaussiankernel at 0x7f12f14ec730>, 'n_jobs': 8, 'verbose': True} is: \n",
- "\n",
- "\n",
- "getting canonkeys: 183it [00:00, 2431.05it/s]\n",
- "calculating kernels: 16836it [00:00, 225177.06it/s]\n",
- "\n",
- " --- treelet kernel matrix of size 183 built in 0.2614881992340088 seconds ---\n",
- "\n",
- "the gram matrix with parameters {'sub_kernel': <function polynomialkernel at 0x7f12f14ec7b8>, 'n_jobs': 8, 'verbose': True} is: \n",
- "\n",
- "\n",
- "\n",
- "2 gram matrices are calculated, 0 of which are ignored.\n",
- "\n",
- "3. Fitting and predicting using nested cross validation. This could really take a while...\n",
- "cross validation: 30it [00:06, 4.34it/s]\n",
- "\n",
- "4. Getting final performance...\n",
- "best_params_out: [{'sub_kernel': <function polynomialkernel at 0x7f12f14ec7b8>, 'n_jobs': 8, 'verbose': True}]\n",
- "best_params_in: [{'alpha': 0.01}]\n",
- "\n",
- "best_val_perf: 8.699254729880051\n",
- "best_val_std: 0.6859488791023038\n",
- "final_performance: [10.449041034883777]\n",
- "final_confidence: [5.005824863496953]\n",
- "train_performance: [1.3405521528763233]\n",
- "train_std: [0.0923786919637616]\n",
- "\n",
- "time to calculate gram matrix with different hyper-params: 0.27±0.01s\n",
- "time to calculate best gram matrix: 0.26±0.00s\n",
- "total training time with all hyper-param choices: 8.18s\n",
- "\n",
- "\n",
- "\n",
- "Alkane\n",
- "\n",
- "--- This is a regression problem ---\n",
- "\n",
- "\n",
- "1. Loading dataset from file...\n",
- "\n",
- "2. Calculating gram matrices. This could take a while...\n",
- "getting canonkeys: 150it [00:00, 1460.40it/s]\n",
- "calculating kernels: 11325it [00:00, 188753.18it/s]\n",
- "\n",
- " --- treelet kernel matrix of size 150 built in 0.452197790145874 seconds ---\n",
- "\n",
- "the gram matrix with parameters {'sub_kernel': <function gaussiankernel at 0x7f12f14ec730>, 'n_jobs': 8, 'verbose': True} is: \n",
- "\n",
- "\n",
- "getting canonkeys: 150it [00:00, 3273.02it/s]\n",
- "calculating kernels: 11325it [00:00, 223074.04it/s]\n",
- "\n",
- " --- treelet kernel matrix of size 150 built in 0.2638716697692871 seconds ---\n",
- "\n",
- "the gram matrix with parameters {'sub_kernel': <function polynomialkernel at 0x7f12f14ec7b8>, 'n_jobs': 8, 'verbose': True} is: \n",
- "\n",
- "\n",
- "\n",
- "2 gram matrices are calculated, 0 of which are ignored.\n",
- "\n",
- "3. Fitting and predicting using nested cross validation. This could really take a while...\n",
- "cross validation: 1it [00:01, 1.41s/it]"
- ]
- }
- ],
- "source": [
- "from libs import *\n",
- "import multiprocessing\n",
- "\n",
- "from gklearn.kernels.treeletKernel import treeletkernel\n",
- "from gklearn.utils.kernels import gaussiankernel, polynomialkernel\n",
- "\n",
- "dslist = [\n",
- " {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',\n",
- " 'task': 'regression'}, # node symb\n",
- " {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',\n",
- " 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, \n",
- " # contains single node graph, node symb\n",
- " {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb\n",
- " {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled\n",
- " {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb\n",
- "# {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},\n",
- "# # node nsymb\n",
- " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n",
- " # node symb/nsymb\n",
- "# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},\n",
- "# # node/edge symb\n",
- "# {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb\n",
- "\n",
- " # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb\n",
- " # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb\n",
- " # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb\n",
- " # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},\n",
- " #\n",
- " # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb\n",
- " # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb\n",
- " # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb\n",
- " # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb\n",
- " # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb\n",
- "\n",
- " # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb\n",
- " # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb\n",
- " {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb\n",
- " # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
- " # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
- " # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
- " # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
- " # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
- " # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb\n",
- "\n",
- " # # not working below\n",
- " # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
- " # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
- " # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
- " # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
- "]\n",
- "estimator = treeletkernel\n",
- "param_grid_precomputed = {'sub_kernel': [gaussiankernel, polynomialkernel]}\n",
- "param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},\n",
- " {'alpha': np.logspace(-10, 10, num=41, base=10)}]\n",
- "\n",
- "for ds in dslist:\n",
- " print()\n",
- " print(ds['name'])\n",
- " model_selection_for_precomputed_kernel(\n",
- " ds['dataset'],\n",
- " estimator,\n",
- " param_grid_precomputed,\n",
- " (param_grid[1] if ('task' in ds and ds['task']\n",
- " == 'regression') else param_grid[0]),\n",
- " (ds['task'] if 'task' in ds else 'classification'),\n",
- " NUM_TRIALS=30,\n",
- " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
- " extra_params=(ds['extra_params'] if 'extra_params' in ds else None),\n",
- " ds_name=ds['name'],\n",
- " n_jobs=multiprocessing.cpu_count(),\n",
- " read_gm_from_file=False,\n",
- " verbose=True)\n",
- " print()"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|