You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_weisfeilerlehmankernel.ipynb 6.4 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": null,
  6. "metadata": {},
  7. "outputs": [
  8. {
  9. "name": "stdout",
  10. "output_type": "stream",
  11. "text": [
  12. "\n",
  13. "MUTAG\n",
  14. "\n",
  15. "--- This is a classification problem ---\n",
  16. "\n",
  17. "\n",
  18. "1. Loading dataset from file...\n",
  19. "\n",
  20. "2. Calculating gram matrices. This could take a while...\n",
  21. "\n",
  22. " --- Weisfeiler-Lehman subtree kernel matrix of size 188 built in 0.14636015892028809 seconds ---\n",
  23. "\n",
  24. "the gram matrix with parameters {'base_kernel': 'subtree', 'height': 0.0, 'n_jobs': 8, 'verbose': True} is: \n",
  25. "\n",
  26. "\n",
  27. "\n",
  28. " --- Weisfeiler-Lehman subtree kernel matrix of size 188 built in 0.2917311191558838 seconds ---\n",
  29. "\n",
  30. "the gram matrix with parameters {'base_kernel': 'subtree', 'height': 1.0, 'n_jobs': 8, 'verbose': True} is: \n",
  31. "\n",
  32. "\n"
  33. ]
  34. }
  35. ],
  36. "source": [
  37. "#!/usr/bin/env python3\n",
  38. "# -*- coding: utf-8 -*-\n",
  39. "\"\"\"\n",
  40. "Created on Mon Mar 21 11:19:33 2019\n",
  41. "\n",
  42. "@author: ljia\n",
  43. "\"\"\"\n",
  44. "\n",
  45. "from libs import *\n",
  46. "import multiprocessing\n",
  47. "\n",
  48. "from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel\n",
  49. "from gklearn.utils.kernels import gaussiankernel, polynomialkernel\n",
  50. "\n",
  51. "\n",
  52. "dslist = [\n",
  53. " {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',\n",
  54. " 'task': 'regression'}, # node symb\n",
  55. " {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',\n",
  56. " 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, \n",
  57. " # contains single node graph, node symb\n",
  58. " {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb\n",
  59. " {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled\n",
  60. " {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb\n",
  61. " {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},\n",
  62. " # node nsymb\n",
  63. " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n",
  64. " # node symb/nsymb\n",
  65. "# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},\n",
  66. "# # node/edge symb\n",
  67. " {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb\n",
  68. "\n",
  69. " # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb\n",
  70. " # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb\n",
  71. " # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb\n",
  72. " # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},\n",
  73. " #\n",
  74. " # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb\n",
  75. " # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb\n",
  76. " # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb\n",
  77. " # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb\n",
  78. " # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb\n",
  79. "\n",
  80. " # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb\n",
  81. " # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb\n",
  82. "# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb\n",
  83. " {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
  84. " 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
  85. " {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
  86. " 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
  87. " # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
  88. " # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb\n",
  89. "\n",
  90. " # # not working below\n",
  91. " # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
  92. " # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
  93. " # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
  94. " # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
  95. "]\n",
  96. "estimator = weisfeilerlehmankernel\n",
  97. "param_grid_precomputed = {'base_kernel': ['subtree'], \n",
  98. " 'height': np.linspace(0, 10, 11)}\n",
  99. "param_grid = [{'C': np.logspace(-10, 4, num=29, base=10)},\n",
  100. " {'alpha': np.logspace(-10, 10, num=41, base=10)}]\n",
  101. "\n",
  102. "for ds in dslist:\n",
  103. " print()\n",
  104. " print(ds['name'])\n",
  105. " model_selection_for_precomputed_kernel(\n",
  106. " ds['dataset'],\n",
  107. " estimator,\n",
  108. " param_grid_precomputed,\n",
  109. " (param_grid[1] if ('task' in ds and ds['task']\n",
  110. " == 'regression') else param_grid[0]),\n",
  111. " (ds['task'] if 'task' in ds else 'classification'),\n",
  112. " NUM_TRIALS=30,\n",
  113. " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
  114. " extra_params=(ds['extra_params'] if 'extra_params' in ds else None),\n",
  115. " ds_name=ds['name'],\n",
  116. " n_jobs=multiprocessing.cpu_count(),\n",
  117. " read_gm_from_file=False,\n",
  118. " verbose=True)\n",
  119. " print()"
  120. ]
  121. }
  122. ],
  123. "metadata": {
  124. "kernelspec": {
  125. "display_name": "Python 3",
  126. "language": "python",
  127. "name": "python3"
  128. },
  129. "language_info": {
  130. "codemirror_mode": {
  131. "name": "ipython",
  132. "version": 3
  133. },
  134. "file_extension": ".py",
  135. "mimetype": "text/x-python",
  136. "name": "python",
  137. "nbconvert_exporter": "python",
  138. "pygments_lexer": "ipython3",
  139. "version": "3.6.7"
  140. }
  141. },
  142. "nbformat": 4,
  143. "nbformat_minor": 2
  144. }

A Python package for graph kernels, graph edit distances and graph pre-image problem.