You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_degree_differs_cw.py 2.9 kB

5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 8 17:16:19 2019
  5. @author: ljia
  6. """
  7. import sys
  8. import numpy as np
  9. import networkx as nx
  10. sys.path.insert(0, "../../")
  11. from gklearn.utils.graphfiles import loadDataset
  12. from gklearn.utils.model_selection_precomputed import compute_gram_matrices
  13. from sklearn.model_selection import ParameterGrid
  14. from libs import *
  15. import multiprocessing
  16. dslist = [
  17. {'name': 'ENZYMES', 'dataset': '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  18. # node symb/nsymb
  19. ]
  20. def run_ms(dataset, y, ds):
  21. from gklearn.kernels.commonWalkKernel import commonwalkkernel
  22. estimator = commonwalkkernel
  23. param_grid_precomputed = [{'compute_method': ['geo'],
  24. 'weight': np.linspace(0.01, 0.15, 15)},
  25. # 'weight': np.logspace(-1, -10, num=10, base=10)},
  26. {'compute_method': ['exp'], 'weight': range(0, 15)}]
  27. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  28. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  29. _, gram_matrix_time, _, _, _ = compute_gram_matrices(
  30. dataset, y, estimator, list(ParameterGrid(param_grid_precomputed)),
  31. '../../notebooks/results/' + estimator.__name__, ds['name'],
  32. n_jobs=multiprocessing.cpu_count(), verbose=False)
  33. average_gram_matrix_time = np.mean(gram_matrix_time)
  34. std_gram_matrix_time = np.std(gram_matrix_time, ddof=1)
  35. print('\n***** time to calculate gram matrix with different hyper-params: {:.2f}±{:.2f}s'
  36. .format(average_gram_matrix_time, std_gram_matrix_time))
  37. print()
  38. return average_gram_matrix_time, std_gram_matrix_time
  39. for ds in dslist:
  40. print()
  41. print(ds['name'])
  42. Gn, y_all = loadDataset(
  43. ds['dataset'], filename_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  44. extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  45. degree_list = [np.mean(list(dict(g.degree()).values())) for g in Gn]
  46. idx_sorted = np.argsort(degree_list)
  47. degree_list.sort()
  48. Gn = [Gn[idx] for idx in idx_sorted]
  49. y_all = [y_all[idx] for idx in idx_sorted]
  50. len_1piece = int(len(Gn) / 5)
  51. ave_time = []
  52. std_time = []
  53. ave_degree = []
  54. for piece in range(0, 5):
  55. print('piece', str(piece), ':')
  56. Gn_p = Gn[len_1piece * piece:len_1piece * (piece + 1)]
  57. y_all_p = y_all[len_1piece * piece:len_1piece * (piece + 1)]
  58. aved = np.mean(degree_list[len_1piece * piece:len_1piece * (piece + 1)])
  59. ave_degree.append(aved)
  60. avet, stdt = run_ms(Gn_p, y_all_p, ds)
  61. ave_time.append(avet)
  62. std_time.append(stdt)
  63. print('\n****** for dataset', ds['name'], ', the average time is \n', ave_time,
  64. '\nthe time std is \n', std_time)
  65. print('corresponding average vertex degrees are', ave_degree)
  66. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.