You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_degree_differs_rw.py 4.5 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 8 17:48:06 2019
  5. @author: ljia
  6. """
  7. import sys
  8. import numpy as np
  9. import networkx as nx
  10. sys.path.insert(0, "../../")
  11. from gklearn.utils.graphfiles import loadDataset
  12. from gklearn.utils.model_selection_precomputed import compute_gram_matrices
  13. from sklearn.model_selection import ParameterGrid
  14. from libs import *
  15. import multiprocessing
  16. import functools
  17. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  18. dslist = [
  19. {'name': 'ENZYMES', 'dataset': '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  20. # node symb/nsymb
  21. ]
  22. def run_ms(dataset, y, ds):
  23. from gklearn.kernels.randomWalkKernel import randomwalkkernel
  24. estimator = randomwalkkernel
  25. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  26. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  27. ave_time = {}
  28. std_time = {}
  29. for compute_method in ['sylvester', 'conjugate', 'fp', 'spectral']:
  30. if compute_method == 'sylvester':
  31. param_grid_precomputed = {'compute_method': ['sylvester'],
  32. # 'weight': np.linspace(0.01, 0.10, 10)}
  33. 'weight': np.logspace(-1, -10, num=10, base=10)}
  34. elif compute_method == 'conjugate':
  35. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  36. param_grid_precomputed = {'compute_method': ['conjugate'],
  37. 'node_kernels':
  38. [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
  39. 'edge_kernels':
  40. [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
  41. 'weight': np.logspace(-1, -10, num=10, base=10)}
  42. elif compute_method == 'fp':
  43. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  44. param_grid_precomputed = {'compute_method': ['fp'],
  45. 'node_kernels':
  46. [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
  47. 'edge_kernels':
  48. [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}],
  49. 'weight': np.logspace(-3, -10, num=8, base=10)}
  50. elif compute_method == 'spectral':
  51. param_grid_precomputed = {'compute_method': ['spectral'],
  52. 'weight': np.logspace(-1, -10, num=10, base=10),
  53. 'sub_kernel': ['geo', 'exp']}
  54. _, gram_matrix_time, _, _, _ = compute_gram_matrices(
  55. dataset, y, estimator, list(ParameterGrid(param_grid_precomputed)),
  56. '../../notebooks/results/' + estimator.__name__, ds['name'],
  57. n_jobs=multiprocessing.cpu_count(), verbose=False)
  58. average_gram_matrix_time = np.mean(gram_matrix_time)
  59. std_gram_matrix_time = np.std(gram_matrix_time, ddof=1)
  60. print('\n***** time to calculate gram matrix with different hyper-params: {:.2f}±{:.2f}s'
  61. .format(average_gram_matrix_time, std_gram_matrix_time))
  62. ave_time[compute_method] = average_gram_matrix_time
  63. std_time[compute_method] = std_gram_matrix_time
  64. print()
  65. return ave_time, std_time
  66. for ds in dslist:
  67. print()
  68. print(ds['name'])
  69. Gn, y_all = loadDataset(
  70. ds['dataset'], filename_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  71. extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  72. degree_list = [np.mean(list(dict(g.degree()).values())) for g in Gn]
  73. idx_sorted = np.argsort(degree_list)
  74. degree_list.sort()
  75. Gn = [Gn[idx] for idx in idx_sorted]
  76. y_all = [y_all[idx] for idx in idx_sorted]
  77. len_1piece = int(len(Gn) / 5)
  78. ave_time = []
  79. std_time = []
  80. ave_degree = []
  81. for piece in range(0, 5):
  82. print('piece', str(piece), ':')
  83. Gn_p = Gn[len_1piece * piece:len_1piece * (piece + 1)]
  84. y_all_p = y_all[len_1piece * piece:len_1piece * (piece + 1)]
  85. aved = np.mean(degree_list[len_1piece * piece:len_1piece * (piece + 1)])
  86. ave_degree.append(aved)
  87. avet, stdt = run_ms(Gn_p, y_all_p, ds)
  88. ave_time.append(avet)
  89. std_time.append(stdt)
  90. print('\n****** for dataset', ds['name'], ', the average time is \n', ave_time,
  91. '\nthe time std is \n', std_time)
  92. print('corresponding average vertex degrees are', ave_degree)
  93. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.