You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_degree_differs_sp.py 2.9 kB

5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 8 17:46:02 2019
  5. @author: ljia
  6. """
  7. import sys
  8. import numpy as np
  9. import networkx as nx
  10. sys.path.insert(0, "../../")
  11. from gklearn.utils.graphfiles import loadDataset
  12. from gklearn.utils.model_selection_precomputed import compute_gram_matrices
  13. from sklearn.model_selection import ParameterGrid
  14. from libs import *
  15. import functools
  16. import multiprocessing
  17. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  18. dslist = [
  19. {'name': 'ENZYMES', 'dataset': '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  20. # node symb/nsymb
  21. ]
  22. def run_ms(dataset, y, ds):
  23. from gklearn.kernels.spKernel import spkernel
  24. estimator = spkernel
  25. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  26. param_grid_precomputed = {'node_kernels': [
  27. {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]}
  28. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  29. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  30. _, gram_matrix_time, _, _, _ = compute_gram_matrices(
  31. dataset, y, estimator, list(ParameterGrid(param_grid_precomputed)),
  32. '../../notebooks/results/' + estimator.__name__, ds['name'],
  33. n_jobs=multiprocessing.cpu_count(), verbose=False)
  34. average_gram_matrix_time = np.mean(gram_matrix_time)
  35. std_gram_matrix_time = np.std(gram_matrix_time, ddof=1)
  36. print('\n***** time to calculate gram matrix with different hyper-params: {:.2f}±{:.2f}s'
  37. .format(average_gram_matrix_time, std_gram_matrix_time))
  38. print()
  39. return average_gram_matrix_time, std_gram_matrix_time
  40. for ds in dslist:
  41. print()
  42. print(ds['name'])
  43. Gn, y_all = loadDataset(
  44. ds['dataset'], filename_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  45. extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  46. degree_list = [np.mean(list(dict(g.degree()).values())) for g in Gn]
  47. idx_sorted = np.argsort(degree_list)
  48. degree_list.sort()
  49. Gn = [Gn[idx] for idx in idx_sorted]
  50. y_all = [y_all[idx] for idx in idx_sorted]
  51. len_1piece = int(len(Gn) / 5)
  52. ave_time = []
  53. std_time = []
  54. ave_degree = []
  55. for piece in range(0, 5):
  56. print('piece', str(piece), ':')
  57. Gn_p = Gn[len_1piece * piece:len_1piece * (piece + 1)]
  58. y_all_p = y_all[len_1piece * piece:len_1piece * (piece + 1)]
  59. aved = np.mean(degree_list[len_1piece * piece:len_1piece * (piece + 1)])
  60. ave_degree.append(aved)
  61. avet, stdt = run_ms(Gn_p, y_all_p, ds)
  62. ave_time.append(avet)
  63. std_time.append(stdt)
  64. print('\n****** for dataset', ds['name'], ', the average time is \n', ave_time,
  65. '\nthe time std is \n', std_time)
  66. print('corresponding average vertex degrees are', ave_degree)
  67. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.