You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_median_graph_estimator.py 2.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Mon Mar 16 17:26:40 2020
  5. @author: ljia
  6. """
  7. def test_median_graph_estimator():
  8. from gklearn.utils.graphfiles import loadDataset
  9. from gklearn.ged.median import MedianGraphEstimator, constant_node_costs
  10. from gklearn.gedlib import librariesImport, gedlibpy
  11. from gklearn.preimage.utils import get_same_item_indices
  12. from gklearn.preimage.ged import convertGraph
  13. import multiprocessing
  14. # estimator parameters.
  15. init_type = 'MEDOID'
  16. num_inits = 1
  17. threads = multiprocessing.cpu_count()
  18. time_limit = 60000
  19. # algorithm parameters.
  20. algo = 'IPFP'
  21. initial_solutions = 40
  22. algo_options_suffix = ' --initial-solutions ' + str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1'
  23. edit_cost_name = 'LETTER2'
  24. edit_cost_constants = [0.02987291, 0.0178211, 0.01431966, 0.001, 0.001]
  25. ds_name = 'COIL-DEL'
  26. # Load dataset.
  27. # dataset = '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  28. dataset = '../../../datasets/Letter-high/Letter-high_A.txt'
  29. Gn, y_all = loadDataset(dataset)
  30. y_idx = get_same_item_indices(y_all)
  31. for i, (y, values) in enumerate(y_idx.items()):
  32. Gn_i = [Gn[val] for val in values]
  33. break
  34. # Set up the environment.
  35. ged_env = gedlibpy.GEDEnv()
  36. # gedlibpy.restart_env()
  37. ged_env.set_edit_cost(edit_cost_name, edit_cost_constant=edit_cost_constants)
  38. for G in Gn_i:
  39. ged_env.add_nx_graph(convertGraph(G, edit_cost_name), '')
  40. graph_ids = ged_env.get_all_graph_ids()
  41. set_median_id = ged_env.add_graph('set_median')
  42. gen_median_id = ged_env.add_graph('gen_median')
  43. ged_env.init(init_option='EAGER_WITHOUT_SHUFFLED_COPIES')
  44. # Set up the estimator.
  45. mge = MedianGraphEstimator(ged_env, constant_node_costs(edit_cost_name))
  46. mge.set_refine_method(algo, '--threads ' + str(threads) + ' --initial-solutions ' + str(initial_solutions) + ' --ratio-runs-from-initial-solutions 1')
  47. mge_options = '--time-limit ' + str(time_limit) + ' --stdout 2 --init-type ' + init_type
  48. mge_options += ' --random-inits ' + str(num_inits) + ' --seed ' + '1' + ' --refine FALSE'# @todo: std::to_string(rng())
  49. # Select the GED algorithm.
  50. algo_options = '--threads ' + str(threads) + algo_options_suffix
  51. mge.set_options(mge_options)
  52. mge.set_init_method(algo, algo_options)
  53. mge.set_descent_method(algo, algo_options)
  54. # Run the estimator.
  55. mge.run(graph_ids, set_median_id, gen_median_id)
  56. # Get SODs.
  57. sod_sm = mge.get_sum_of_distances('initialized')
  58. sod_gm = mge.get_sum_of_distances('converged')
  59. print('sod_sm, sod_gm: ', sod_sm, sod_gm)
  60. # Get median graphs.
  61. set_median = ged_env.get_nx_graph(set_median_id)
  62. gen_median = ged_env.get_nx_graph(gen_median_id)
  63. return set_median, gen_median
  64. if __name__ == '__main__':
  65. set_median, gen_median = test_median_graph_estimator()

A Python package for graph kernels, graph edit distances and graph pre-image problem.