|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- #!/usr/bin/env python
-
- import sys
- import os
- from subprocess import *
-
- if len(sys.argv) <= 1:
- print('Usage: {0} training_file [testing_file]'.format(sys.argv[0]))
- raise SystemExit
-
- # svm, grid, and gnuplot executable files
-
- is_win32 = (sys.platform == 'win32')
- if not is_win32:
- svmscale_exe = "../svm-scale"
- svmtrain_exe = "../svm-train"
- svmpredict_exe = "../svm-predict"
- grid_py = "./grid.py"
- gnuplot_exe = "/usr/bin/gnuplot"
- else:
- # example for windows
- svmscale_exe = r"..\windows\svm-scale.exe"
- svmtrain_exe = r"..\windows\svm-train.exe"
- svmpredict_exe = r"..\windows\svm-predict.exe"
- gnuplot_exe = r"c:\tmp\gnuplot\binary\pgnuplot.exe"
- grid_py = r".\grid.py"
-
- assert os.path.exists(svmscale_exe),"svm-scale executable not found"
- assert os.path.exists(svmtrain_exe),"svm-train executable not found"
- assert os.path.exists(svmpredict_exe),"svm-predict executable not found"
- assert os.path.exists(gnuplot_exe),"gnuplot executable not found"
- assert os.path.exists(grid_py),"grid.py not found"
-
- train_pathname = sys.argv[1]
- assert os.path.exists(train_pathname),"training file not found"
- file_name = os.path.split(train_pathname)[1]
- scaled_file = file_name + ".scale"
- model_file = file_name + ".model"
- range_file = file_name + ".range"
-
- if len(sys.argv) > 2:
- test_pathname = sys.argv[2]
- file_name = os.path.split(test_pathname)[1]
- assert os.path.exists(test_pathname),"testing file not found"
- scaled_test_file = file_name + ".scale"
- predict_test_file = file_name + ".predict"
-
- cmd = '{0} -s "{1}" "{2}" > "{3}"'.format(svmscale_exe, range_file, train_pathname, scaled_file)
- print('Scaling training data...')
- Popen(cmd, shell = True, stdout = PIPE).communicate()
-
- cmd = '{0} -svmtrain "{1}" -gnuplot "{2}" "{3}"'.format(grid_py, svmtrain_exe, gnuplot_exe, scaled_file)
- print('Cross validation...')
- f = Popen(cmd, shell = True, stdout = PIPE).stdout
-
- line = ''
- while True:
- last_line = line
- line = f.readline()
- if not line: break
- c,g,rate = map(float,last_line.split())
-
- print('Best c={0}, g={1} CV rate={2}'.format(c,g,rate))
-
- cmd = '{0} -c {1} -g {2} "{3}" "{4}"'.format(svmtrain_exe,c,g,scaled_file,model_file)
- print('Training...')
- Popen(cmd, shell = True, stdout = PIPE).communicate()
-
- print('Output model: {0}'.format(model_file))
- if len(sys.argv) > 2:
- cmd = '{0} -r "{1}" "{2}" > "{3}"'.format(svmscale_exe, range_file, test_pathname, scaled_test_file)
- print('Scaling testing data...')
- Popen(cmd, shell = True, stdout = PIPE).communicate()
-
- cmd = '{0} "{1}" "{2}" "{3}"'.format(svmpredict_exe, scaled_test_file, model_file, predict_test_file)
- print('Testing...')
- Popen(cmd, shell = True).communicate()
-
- print('Output prediction: {0}'.format(predict_test_file))
|