You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 25 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Mar 26 18:48:27 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import networkx as nx
  9. from gklearn.utils.graph_files import load_dataset
  10. import os
  11. class Dataset(object):
  12. def __init__(self, filename=None, filename_targets=None, **kwargs):
  13. if filename is None:
  14. self.__graphs = None
  15. self.__targets = None
  16. self.__node_labels = None
  17. self.__edge_labels = None
  18. self.__node_attrs = None
  19. self.__edge_attrs = None
  20. else:
  21. self.load_dataset(filename, filename_targets=filename_targets, **kwargs)
  22. self.__substructures = None
  23. self.__node_label_dim = None
  24. self.__edge_label_dim = None
  25. self.__directed = None
  26. self.__dataset_size = None
  27. self.__total_node_num = None
  28. self.__ave_node_num = None
  29. self.__min_node_num = None
  30. self.__max_node_num = None
  31. self.__total_edge_num = None
  32. self.__ave_edge_num = None
  33. self.__min_edge_num = None
  34. self.__max_edge_num = None
  35. self.__ave_node_degree = None
  36. self.__min_node_degree = None
  37. self.__max_node_degree = None
  38. self.__ave_fill_factor = None
  39. self.__min_fill_factor = None
  40. self.__max_fill_factor = None
  41. self.__node_label_nums = None
  42. self.__edge_label_nums = None
  43. self.__node_attr_dim = None
  44. self.__edge_attr_dim = None
  45. self.__class_number = None
  46. def load_dataset(self, filename, filename_targets=None, **kwargs):
  47. self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs)
  48. self.__node_labels = label_names['node_labels']
  49. self.__node_attrs = label_names['node_attrs']
  50. self.__edge_labels = label_names['edge_labels']
  51. self.__edge_attrs = label_names['edge_attrs']
  52. self.clean_labels()
  53. def load_graphs(self, graphs, targets=None):
  54. # this has to be followed by set_labels().
  55. self.__graphs = graphs
  56. self.__targets = targets
  57. # self.set_labels_attrs() # @todo
  58. def load_predefined_dataset(self, ds_name):
  59. current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
  60. if ds_name == 'Acyclic':
  61. ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds'
  62. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  63. elif ds_name == 'AIDS':
  64. ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt'
  65. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  66. elif ds_name == 'Alkane':
  67. ds_file = current_path + '../../datasets/Alkane/dataset.ds'
  68. fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt'
  69. self.__graphs, self.__targets, label_names = load_dataset(ds_file, filename_targets=fn_targets)
  70. elif ds_name == 'COIL-DEL':
  71. ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  72. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  73. elif ds_name == 'COIL-RAG':
  74. ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt'
  75. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  76. elif ds_name == 'COLORS-3':
  77. ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt'
  78. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  79. elif ds_name == 'Cuneiform':
  80. ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt'
  81. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  82. elif ds_name == 'DD':
  83. ds_file = current_path + '../../datasets/DD/DD_A.txt'
  84. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  85. elif ds_name == 'ENZYMES':
  86. ds_file = current_path + '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  87. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  88. elif ds_name == 'Fingerprint':
  89. ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
  90. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  91. elif ds_name == 'FRANKENSTEIN':
  92. ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt'
  93. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  94. elif ds_name == 'Letter-high': # node non-symb
  95. ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
  96. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  97. elif ds_name == 'Letter-low': # node non-symb
  98. ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt'
  99. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  100. elif ds_name == 'Letter-med': # node non-symb
  101. ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt'
  102. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  103. elif ds_name == 'MAO':
  104. ds_file = current_path + '../../datasets/MAO/dataset.ds'
  105. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  106. elif ds_name == 'Monoterpenoides':
  107. ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds'
  108. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  109. elif ds_name == 'MUTAG':
  110. ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt'
  111. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  112. elif ds_name == 'NCI1':
  113. ds_file = current_path + '../../datasets/NCI1/NCI1_A.txt'
  114. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  115. elif ds_name == 'NCI109':
  116. ds_file = current_path + '../../datasets/NCI109/NCI109_A.txt'
  117. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  118. elif ds_name == 'PAH':
  119. ds_file = current_path + '../../datasets/PAH/dataset.ds'
  120. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  121. elif ds_name == 'SYNTHETIC':
  122. pass
  123. elif ds_name == 'SYNTHETICnew':
  124. ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  125. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  126. elif ds_name == 'Synthie':
  127. pass
  128. else:
  129. raise Exception('The dataset name "', ds_name, '" is not pre-defined.')
  130. self.__node_labels = label_names['node_labels']
  131. self.__node_attrs = label_names['node_attrs']
  132. self.__edge_labels = label_names['edge_labels']
  133. self.__edge_attrs = label_names['edge_attrs']
  134. self.clean_labels()
  135. def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]):
  136. self.__node_labels = node_labels
  137. self.__node_attrs = node_attrs
  138. self.__edge_labels = edge_labels
  139. self.__edge_attrs = edge_attrs
  140. def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
  141. # @todo: remove labels which have only one possible values.
  142. if node_labels is None:
  143. self.__node_labels = self.__graphs[0].graph['node_labels']
  144. # # graphs are considered node unlabeled if all nodes have the same label.
  145. # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
  146. if node_attrs is None:
  147. self.__node_attrs = self.__graphs[0].graph['node_attrs']
  148. # for G in Gn:
  149. # for n in G.nodes(data=True):
  150. # if 'attributes' in n[1]:
  151. # return len(n[1]['attributes'])
  152. # return 0
  153. if edge_labels is None:
  154. self.__edge_labels = self.__graphs[0].graph['edge_labels']
  155. # # graphs are considered edge unlabeled if all edges have the same label.
  156. # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
  157. if edge_attrs is None:
  158. self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
  159. # for G in Gn:
  160. # if nx.number_of_edges(G) > 0:
  161. # for e in G.edges(data=True):
  162. # if 'attributes' in e[2]:
  163. # return len(e[2]['attributes'])
  164. # return 0
  165. def get_dataset_infos(self, keys=None):
  166. """Computes and returns the structure and property information of the graph dataset.
  167. Parameters
  168. ----------
  169. keys : list
  170. List of strings which indicate which informations will be returned. The
  171. possible choices includes:
  172. 'substructures': sub-structures graphs contains, including 'linear', 'non
  173. linear' and 'cyclic'.
  174. 'node_label_dim': whether vertices have symbolic labels.
  175. 'edge_label_dim': whether egdes have symbolic labels.
  176. 'directed': whether graphs in dataset are directed.
  177. 'dataset_size': number of graphs in dataset.
  178. 'total_node_num': total number of vertices of all graphs in dataset.
  179. 'ave_node_num': average number of vertices of graphs in dataset.
  180. 'min_node_num': minimum number of vertices of graphs in dataset.
  181. 'max_node_num': maximum number of vertices of graphs in dataset.
  182. 'total_edge_num': total number of edges of all graphs in dataset.
  183. 'ave_edge_num': average number of edges of graphs in dataset.
  184. 'min_edge_num': minimum number of edges of graphs in dataset.
  185. 'max_edge_num': maximum number of edges of graphs in dataset.
  186. 'ave_node_degree': average vertex degree of graphs in dataset.
  187. 'min_node_degree': minimum vertex degree of graphs in dataset.
  188. 'max_node_degree': maximum vertex degree of graphs in dataset.
  189. 'ave_fill_factor': average fill factor (number_of_edges /
  190. (number_of_nodes ** 2)) of graphs in dataset.
  191. 'min_fill_factor': minimum fill factor of graphs in dataset.
  192. 'max_fill_factor': maximum fill factor of graphs in dataset.
  193. 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
  194. 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
  195. 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
  196. Extracted from the 'attributes' attribute of graph nodes.
  197. 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
  198. Extracted from the 'attributes' attribute of graph edges.
  199. 'class_number': number of classes. Only available for classification problems.
  200. All informations above will be returned if `keys` is not given.
  201. Return
  202. ------
  203. dict
  204. Information of the graph dataset keyed by `keys`.
  205. """
  206. infos = {}
  207. if keys == None:
  208. keys = [
  209. 'substructures',
  210. 'node_label_dim',
  211. 'edge_label_dim',
  212. 'directed',
  213. 'dataset_size',
  214. 'total_node_num',
  215. 'ave_node_num',
  216. 'min_node_num',
  217. 'max_node_num',
  218. 'total_edge_num',
  219. 'ave_edge_num',
  220. 'min_edge_num',
  221. 'max_edge_num',
  222. 'ave_node_degree',
  223. 'min_node_degree',
  224. 'max_node_degree',
  225. 'ave_fill_factor',
  226. 'min_fill_factor',
  227. 'max_fill_factor',
  228. 'node_label_nums',
  229. 'edge_label_nums',
  230. 'node_attr_dim',
  231. 'edge_attr_dim',
  232. 'class_number',
  233. ]
  234. # dataset size
  235. if 'dataset_size' in keys:
  236. if self.__dataset_size is None:
  237. self.__dataset_size = self.__get_dataset_size()
  238. infos['dataset_size'] = self.__dataset_size
  239. # graph node number
  240. if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
  241. all_node_nums = self.__get_all_node_nums()
  242. if 'total_node_num' in keys:
  243. if self.__total_node_num is None:
  244. self.__total_node_num = self.__get_total_node_num(all_node_nums)
  245. infos['total_node_num'] = self.__total_node_num
  246. if 'ave_node_num' in keys:
  247. if self.__ave_node_num is None:
  248. self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
  249. infos['ave_node_num'] = self.__ave_node_num
  250. if 'min_node_num' in keys:
  251. if self.__min_node_num is None:
  252. self.__min_node_num = self.__get_min_node_num(all_node_nums)
  253. infos['min_node_num'] = self.__min_node_num
  254. if 'max_node_num' in keys:
  255. if self.__max_node_num is None:
  256. self.__max_node_num = self.__get_max_node_num(all_node_nums)
  257. infos['max_node_num'] = self.__max_node_num
  258. # graph edge number
  259. if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
  260. all_edge_nums = self.__get_all_edge_nums()
  261. if 'total_edge_num' in keys:
  262. if self.__total_edge_num is None:
  263. self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
  264. infos['total_edge_num'] = self.__total_edge_num
  265. if 'ave_edge_num' in keys:
  266. if self.__ave_edge_num is None:
  267. self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
  268. infos['ave_edge_num'] = self.__ave_edge_num
  269. if 'max_edge_num' in keys:
  270. if self.__max_edge_num is None:
  271. self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
  272. infos['max_edge_num'] = self.__max_edge_num
  273. if 'min_edge_num' in keys:
  274. if self.__min_edge_num is None:
  275. self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
  276. infos['min_edge_num'] = self.__min_edge_num
  277. # label number
  278. if 'node_label_dim' in keys:
  279. if self.__node_label_dim is None:
  280. self.__node_label_dim = self.__get_node_label_dim()
  281. infos['node_label_dim'] = self.__node_label_dim
  282. if 'node_label_nums' in keys:
  283. if self.__node_label_nums is None:
  284. self.__node_label_nums = {}
  285. for node_label in self.__node_labels:
  286. self.__node_label_nums[node_label] = self.__get_node_label_num(node_label)
  287. infos['node_label_nums'] = self.__node_label_nums
  288. if 'edge_label_dim' in keys:
  289. if self.__edge_label_dim is None:
  290. self.__edge_label_dim = self.__get_edge_label_dim()
  291. infos['edge_label_dim'] = self.__edge_label_dim
  292. if 'edge_label_nums' in keys:
  293. if self.__edge_label_nums is None:
  294. self.__edge_label_nums = {}
  295. for edge_label in self.__edge_labels:
  296. self.__edge_label_nums[edge_label] = self.__get_edge_label_num(edge_label)
  297. infos['edge_label_nums'] = self.__edge_label_nums
  298. if 'directed' in keys or 'substructures' in keys:
  299. if self.__directed is None:
  300. self.__directed = self.__is_directed()
  301. infos['directed'] = self.__directed
  302. # node degree
  303. if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
  304. all_node_degrees = self.__get_all_node_degrees()
  305. if 'ave_node_degree' in keys:
  306. if self.__ave_node_degree is None:
  307. self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
  308. infos['ave_node_degree'] = self.__ave_node_degree
  309. if 'max_node_degree' in keys:
  310. if self.__max_node_degree is None:
  311. self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
  312. infos['max_node_degree'] = self.__max_node_degree
  313. if 'min_node_degree' in keys:
  314. if self.__min_node_degree is None:
  315. self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
  316. infos['min_node_degree'] = self.__min_node_degree
  317. # fill factor
  318. if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
  319. all_fill_factors = self.__get_all_fill_factors()
  320. if 'ave_fill_factor' in keys:
  321. if self.__ave_fill_factor is None:
  322. self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
  323. infos['ave_fill_factor'] = self.__ave_fill_factor
  324. if 'max_fill_factor' in keys:
  325. if self.__max_fill_factor is None:
  326. self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
  327. infos['max_fill_factor'] = self.__max_fill_factor
  328. if 'min_fill_factor' in keys:
  329. if self.__min_fill_factor is None:
  330. self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
  331. infos['min_fill_factor'] = self.__min_fill_factor
  332. if 'substructures' in keys:
  333. if self.__substructures is None:
  334. self.__substructures = self.__get_substructures()
  335. infos['substructures'] = self.__substructures
  336. if 'class_number' in keys:
  337. if self.__class_number is None:
  338. self.__class_number = self.__get_class_number()
  339. infos['class_number'] = self.__class_number
  340. if 'node_attr_dim' in keys:
  341. if self.__node_attr_dim is None:
  342. self.__node_attr_dim = self.__get_node_attr_dim()
  343. infos['node_attr_dim'] = self.__node_attr_dim
  344. if 'edge_attr_dim' in keys:
  345. if self.__edge_attr_dim is None:
  346. self.__edge_attr_dim = self.__get_edge_attr_dim()
  347. infos['edge_attr_dim'] = self.__edge_attr_dim
  348. return infos
  349. def print_graph_infos(self, infos):
  350. from collections import OrderedDict
  351. keys = list(infos.keys())
  352. print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
  353. def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  354. node_labels = [item for item in node_labels if item in self.__node_labels]
  355. edge_labels = [item for item in edge_labels if item in self.__edge_labels]
  356. node_attrs = [item for item in node_attrs if item in self.__node_attrs]
  357. edge_attrs = [item for item in edge_attrs if item in self.__edge_attrs]
  358. for g in self.__graphs:
  359. for nd in g.nodes():
  360. for nl in node_labels:
  361. del g.nodes[nd][nl]
  362. for na in node_attrs:
  363. del g.nodes[nd][na]
  364. for ed in g.edges():
  365. for el in edge_labels:
  366. del g.edges[ed][el]
  367. for ea in edge_attrs:
  368. del g.edges[ed][ea]
  369. if len(node_labels) > 0:
  370. self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels]
  371. if len(edge_labels) > 0:
  372. self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels]
  373. if len(node_attrs) > 0:
  374. self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs]
  375. if len(edge_attrs) > 0:
  376. self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs]
  377. def clean_labels(self):
  378. labels = []
  379. for name in self.__node_labels:
  380. label = set()
  381. for G in self.__graphs:
  382. label = label | set(nx.get_node_attributes(G, name).values())
  383. if len(label) > 1:
  384. labels.append(name)
  385. break
  386. if len(label) < 2:
  387. for G in self.__graphs:
  388. for nd in G.nodes():
  389. del G.nodes[nd][name]
  390. self.__node_labels = labels
  391. labels = []
  392. for name in self.__edge_labels:
  393. label = set()
  394. for G in self.__graphs:
  395. label = label | set(nx.get_edge_attributes(G, name).values())
  396. if len(label) > 1:
  397. labels.append(name)
  398. break
  399. if len(label) < 2:
  400. for G in self.__graphs:
  401. for ed in G.edges():
  402. del G.edges[ed][name]
  403. self.__edge_labels = labels
  404. labels = []
  405. for name in self.__node_attrs:
  406. label = set()
  407. for G in self.__graphs:
  408. label = label | set(nx.get_node_attributes(G, name).values())
  409. if len(label) > 1:
  410. labels.append(name)
  411. break
  412. if len(label) < 2:
  413. for G in self.__graphs:
  414. for nd in G.nodes():
  415. del G.nodes[nd][name]
  416. self.__node_attrs = labels
  417. labels = []
  418. for name in self.__edge_attrs:
  419. label = set()
  420. for G in self.__graphs:
  421. label = label | set(nx.get_edge_attributes(G, name).values())
  422. if len(label) > 1:
  423. labels.append(name)
  424. break
  425. if len(label) < 2:
  426. for G in self.__graphs:
  427. for ed in G.edges():
  428. del G.edges[ed][name]
  429. self.__edge_attrs = labels
  430. def cut_graphs(self, range_):
  431. self.__graphs = [self.__graphs[i] for i in range_]
  432. if self.__targets is not None:
  433. self.__targets = [self.__targets[i] for i in range_]
  434. self.clean_labels()
  435. def trim_dataset(self, edge_required=False):
  436. if edge_required:
  437. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)]
  438. else:
  439. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0]
  440. idx = [p[0] for p in trimed_pairs]
  441. self.__graphs = [p[1] for p in trimed_pairs]
  442. self.__targets = [self.__targets[i] for i in idx]
  443. self.clean_labels()
  444. def copy(self):
  445. dataset = Dataset()
  446. graphs = [g.copy() for g in self.__graphs] if self.__graphs is not None else None
  447. target = self.__targets.copy() if self.__targets is not None else None
  448. node_labels = self.__node_labels.copy() if self.__node_labels is not None else None
  449. node_attrs = self.__node_attrs.copy() if self.__node_attrs is not None else None
  450. edge_labels = self.__edge_labels.copy() if self.__edge_labels is not None else None
  451. edge_attrs = self.__edge_attrs.copy() if self.__edge_attrs is not None else None
  452. dataset.load_graphs(graphs, target)
  453. dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs)
  454. # @todo: clean_labels and add other class members?
  455. return dataset
  456. def get_all_node_labels(self):
  457. node_labels = []
  458. for g in self.__graphs:
  459. for n in g.nodes():
  460. nl = tuple(g.nodes[n].items())
  461. if nl not in node_labels:
  462. node_labels.append(nl)
  463. return node_labels
  464. def get_all_edge_labels(self):
  465. edge_labels = []
  466. for g in self.__graphs:
  467. for e in g.edges():
  468. el = tuple(g.edges[e].items())
  469. if el not in edge_labels:
  470. edge_labels.append(el)
  471. return edge_labels
  472. def __get_dataset_size(self):
  473. return len(self.__graphs)
  474. def __get_all_node_nums(self):
  475. return [nx.number_of_nodes(G) for G in self.__graphs]
  476. def __get_total_node_nums(self, all_node_nums):
  477. return np.sum(all_node_nums)
  478. def __get_ave_node_num(self, all_node_nums):
  479. return np.mean(all_node_nums)
  480. def __get_min_node_num(self, all_node_nums):
  481. return np.amin(all_node_nums)
  482. def __get_max_node_num(self, all_node_nums):
  483. return np.amax(all_node_nums)
  484. def __get_all_edge_nums(self):
  485. return [nx.number_of_edges(G) for G in self.__graphs]
  486. def __get_total_edge_nums(self, all_edge_nums):
  487. return np.sum(all_edge_nums)
  488. def __get_ave_edge_num(self, all_edge_nums):
  489. return np.mean(all_edge_nums)
  490. def __get_min_edge_num(self, all_edge_nums):
  491. return np.amin(all_edge_nums)
  492. def __get_max_edge_num(self, all_edge_nums):
  493. return np.amax(all_edge_nums)
  494. def __get_node_label_dim(self):
  495. return len(self.__node_labels)
  496. def __get_node_label_num(self, node_label):
  497. nl = set()
  498. for G in self.__graphs:
  499. nl = nl | set(nx.get_node_attributes(G, node_label).values())
  500. return len(nl)
  501. def __get_edge_label_dim(self):
  502. return len(self.__edge_labels)
  503. def __get_edge_label_num(self, edge_label):
  504. el = set()
  505. for G in self.__graphs:
  506. el = el | set(nx.get_edge_attributes(G, edge_label).values())
  507. return len(el)
  508. def __is_directed(self):
  509. return nx.is_directed(self.__graphs[0])
  510. def __get_all_node_degrees(self):
  511. return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
  512. def __get_ave_node_degree(self, all_node_degrees):
  513. return np.mean(all_node_degrees)
  514. def __get_max_node_degree(self, all_node_degrees):
  515. return np.amax(all_node_degrees)
  516. def __get_min_node_degree(self, all_node_degrees):
  517. return np.amin(all_node_degrees)
  518. def __get_all_fill_factors(self):
  519. """
  520. Get fill factor, the number of non-zero entries in the adjacency matrix.
  521. Returns
  522. -------
  523. list[float]
  524. List of fill factors for all graphs.
  525. """
  526. return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
  527. def __get_ave_fill_factor(self, all_fill_factors):
  528. return np.mean(all_fill_factors)
  529. def __get_max_fill_factor(self, all_fill_factors):
  530. return np.amax(all_fill_factors)
  531. def __get_min_fill_factor(self, all_fill_factors):
  532. return np.amin(all_fill_factors)
  533. def __get_substructures(self):
  534. subs = set()
  535. for G in self.__graphs:
  536. degrees = list(dict(G.degree()).values())
  537. if any(i == 2 for i in degrees):
  538. subs.add('linear')
  539. if np.amax(degrees) >= 3:
  540. subs.add('non linear')
  541. if 'linear' in subs and 'non linear' in subs:
  542. break
  543. if self.__directed:
  544. for G in self.__graphs:
  545. if len(list(nx.find_cycle(G))) > 0:
  546. subs.add('cyclic')
  547. break
  548. # else:
  549. # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
  550. # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
  551. # for G in Gn:
  552. # if (nx.number_of_edges(G) < upper):
  553. # cyc = list(nx.simple_cycles(G.to_directed()))
  554. # if any(len(i) > 2 for i in cyc):
  555. # subs.add('cyclic')
  556. # break
  557. # if 'cyclic' not in subs:
  558. # for G in Gn:
  559. # cyc = list(nx.simple_cycles(G.to_directed()))
  560. # if any(len(i) > 2 for i in cyc):
  561. # subs.add('cyclic')
  562. # break
  563. return subs
  564. def __get_class_num(self):
  565. return len(set(self.__targets))
  566. def __get_node_attr_dim(self):
  567. return len(self.__node_attrs)
  568. def __get_edge_attr_dim(self):
  569. return len(self.__edge_attrs)
  570. @property
  571. def graphs(self):
  572. return self.__graphs
  573. @property
  574. def targets(self):
  575. return self.__targets
  576. @property
  577. def node_labels(self):
  578. return self.__node_labels
  579. @property
  580. def edge_labels(self):
  581. return self.__edge_labels
  582. @property
  583. def node_attrs(self):
  584. return self.__node_attrs
  585. @property
  586. def edge_attrs(self):
  587. return self.__edge_attrs
  588. def split_dataset_by_target(dataset):
  589. from gklearn.preimage.utils import get_same_item_indices
  590. graphs = dataset.graphs
  591. targets = dataset.targets
  592. datasets = []
  593. idx_targets = get_same_item_indices(targets)
  594. for key, val in idx_targets.items():
  595. sub_graphs = [graphs[i] for i in val]
  596. sub_dataset = Dataset()
  597. sub_dataset.load_graphs(sub_graphs, [key] * len(val))
  598. node_labels = dataset.node_labels.copy() if dataset.node_labels is not None else None
  599. node_attrs = dataset.node_attrs.copy() if dataset.node_attrs is not None else None
  600. edge_labels = dataset.edge_labels.copy() if dataset.edge_labels is not None else None
  601. edge_attrs = dataset.edge_attrs.copy() if dataset.edge_attrs is not None else None
  602. sub_dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs)
  603. datasets.append(sub_dataset)
  604. # @todo: clean_labels?
  605. return datasets

A Python package for graph kernels, graph edit distances and graph pre-image problem.