You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

untildPathKernel.py 7.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. """
  2. @author: linlin
  3. @references: Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical informatics. Neural networks, 18(8):1093–1110, 2005.
  4. """
  5. import sys
  6. import pathlib
  7. sys.path.insert(0, "../")
  8. import time
  9. from collections import Counter
  10. import networkx as nx
  11. import numpy as np
  12. def untildpathkernel(*args, node_label = 'atom', edge_label = 'bond_type', labeled = True, depth = 10, k_func = 'tanimoto'):
  13. """Calculate path graph kernels up to depth d between graphs.
  14. Parameters
  15. ----------
  16. Gn : List of NetworkX graph
  17. List of graphs between which the kernels are calculated.
  18. /
  19. G1, G2 : NetworkX graphs
  20. 2 graphs between which the kernel is calculated.
  21. node_label : string
  22. node attribute used as label. The default node label is atom.
  23. edge_label : string
  24. edge attribute used as label. The default edge label is bond_type.
  25. labeled : boolean
  26. Whether the graphs are labeled. The default is True.
  27. depth : integer
  28. Depth of search. Longest length of paths.
  29. k_func : function
  30. A kernel function used using different notions of fingerprint similarity.
  31. Return
  32. ------
  33. Kmatrix/kernel : Numpy matrix/float
  34. Kernel matrix, each element of which is the path kernel up to d between 2 praphs. / Path kernel up to d between 2 graphs.
  35. """
  36. depth = int(depth)
  37. if len(args) == 1: # for a list of graphs
  38. Gn = args[0]
  39. Kmatrix = np.zeros((len(Gn), len(Gn)))
  40. start_time = time.time()
  41. # get all paths of all graphs before calculating kernels to save time, but this may cost a lot of memory for large dataset.
  42. all_paths = [ find_all_paths_until_length(Gn[i], depth, node_label = node_label, edge_label = edge_label, labeled = labeled) for i in range(0, len(Gn)) ]
  43. for i in range(0, len(Gn)):
  44. for j in range(i, len(Gn)):
  45. Kmatrix[i][j] = _untildpathkernel_do(all_paths[i], all_paths[j], k_func, node_label = node_label, edge_label = edge_label, labeled = labeled)
  46. Kmatrix[j][i] = Kmatrix[i][j]
  47. run_time = time.time() - start_time
  48. print("\n --- kernel matrix of path kernel up to %d of size %d built in %s seconds ---" % (depth, len(Gn), run_time))
  49. return Kmatrix, run_time
  50. else: # for only 2 graphs
  51. start_time = time.time()
  52. all_paths1 = find_all_paths_until_length(args[0], depth, node_label = node_label, edge_label = edge_label, labeled = labeled)
  53. all_paths2 = find_all_paths_until_length(args[1], depth, node_label = node_label, edge_label = edge_label, labeled = labeled)
  54. kernel = _untildpathkernel_do(all_paths1, all_paths2, k_func, node_label = node_label, edge_label = edge_label, labeled = labeled)
  55. run_time = time.time() - start_time
  56. print("\n --- path kernel up to %d built in %s seconds ---" % (depth, run_time))
  57. return kernel, run_time
  58. def _untildpathkernel_do(paths1, paths2, k_func, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  59. """Calculate path graph kernels up to depth d between 2 graphs.
  60. Parameters
  61. ----------
  62. paths1, paths2 : list
  63. List of paths in 2 graphs, where for unlabeled graphs, each path is represented by a list of nodes; while for labeled graphs, each path is represented by a string consists of labels of nodes and edges on that path.
  64. k_func : function
  65. A kernel function used using different notions of fingerprint similarity.
  66. node_label : string
  67. node attribute used as label. The default node label is atom.
  68. edge_label : string
  69. edge attribute used as label. The default edge label is bond_type.
  70. labeled : boolean
  71. Whether the graphs are labeled. The default is True.
  72. Return
  73. ------
  74. kernel : float
  75. Treelet Kernel between 2 graphs.
  76. """
  77. all_paths = list(set(paths1 + paths2))
  78. if k_func == 'tanimoto':
  79. vector1 = [ (1 if path in paths1 else 0) for path in all_paths ]
  80. vector2 = [ (1 if path in paths2 else 0) for path in all_paths ]
  81. kernel_uv = np.dot(vector1, vector2)
  82. kernel = kernel_uv / (len(set(paths1)) + len(set(paths2)) - kernel_uv)
  83. else: # MinMax kernel
  84. path_count1 = Counter(paths1)
  85. path_count2 = Counter(paths2)
  86. vector1 = [ (path_count1[key] if (key in path_count1.keys()) else 0) for key in all_paths ]
  87. vector2 = [ (path_count2[key] if (key in path_count2.keys()) else 0) for key in all_paths ]
  88. kernel = np.sum(np.minimum(vector1, vector2)) / np.sum(np.maximum(vector1, vector2))
  89. return kernel
  90. # this method find paths repetively, it could be faster.
  91. def find_all_paths_until_length(G, length, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  92. """Find all paths with a certain maximum length in a graph. A recursive depth first search is applied.
  93. Parameters
  94. ----------
  95. G : NetworkX graphs
  96. The graph in which paths are searched.
  97. length : integer
  98. The maximum length of paths.
  99. node_label : string
  100. node attribute used as label. The default node label is atom.
  101. edge_label : string
  102. edge attribute used as label. The default edge label is bond_type.
  103. labeled : boolean
  104. Whether the graphs are labeled. The default is True.
  105. Return
  106. ------
  107. path : list
  108. List of paths retrieved, where for unlabeled graphs, each path is represented by a list of nodes; while for labeled graphs, each path is represented by a string consists of labels of nodes and edges on that path.
  109. """
  110. all_paths = []
  111. for i in range(0, length + 1):
  112. new_paths = find_all_paths(G, i)
  113. if new_paths == []:
  114. break
  115. all_paths.extend(new_paths)
  116. if labeled == True: # convert paths to strings
  117. path_strs = []
  118. for path in all_paths:
  119. strlist = [ G.node[node][node_label] + G[node][path[path.index(node) + 1]][edge_label] for node in path[:-1] ]
  120. path_strs.append(''.join(strlist) + G.node[path[-1]][node_label])
  121. return path_strs
  122. return all_paths
  123. def find_paths(G, source_node, length):
  124. """Find all paths with a certain length those start from a source node. A recursive depth first search is applied.
  125. Parameters
  126. ----------
  127. G : NetworkX graphs
  128. The graph in which paths are searched.
  129. source_node : integer
  130. The number of the node from where all paths start.
  131. length : integer
  132. The length of paths.
  133. Return
  134. ------
  135. path : list of list
  136. List of paths retrieved, where each path is represented by a list of nodes.
  137. """
  138. return [[source_node]] if length == 0 else \
  139. [ [source_node] + path for neighbor in G[source_node] \
  140. for path in find_paths(G, neighbor, length - 1) if source_node not in path ]
  141. def find_all_paths(G, length):
  142. """Find all paths with a certain length in a graph. A recursive depth first search is applied.
  143. Parameters
  144. ----------
  145. G : NetworkX graphs
  146. The graph in which paths are searched.
  147. length : integer
  148. The length of paths.
  149. Return
  150. ------
  151. path : list of list
  152. List of paths retrieved, where each path is represented by a list of nodes.
  153. """
  154. all_paths = []
  155. for node in G:
  156. all_paths.extend(find_paths(G, node, length))
  157. ### The following process is not carried out according to the original article
  158. # all_paths_r = [ path[::-1] for path in all_paths ]
  159. # # For each path, two presentation are retrieved from its two extremities. Remove one of them.
  160. # for idx, path in enumerate(all_paths[:-1]):
  161. # for path2 in all_paths_r[idx+1::]:
  162. # if path == path2:
  163. # all_paths[idx] = []
  164. # break
  165. # return list(filter(lambda a: a != [], all_paths))
  166. return all_paths

A Python package for graph kernels, graph edit distances and graph pre-image problem.