|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jan 14 15:39:29 2020
-
- @author: ljia
- """
- import multiprocessing
- import functools
- from gklearn.preimage.utils import generate_median_preimages_by_class
-
-
- def test_median_preimage_generator():
- """MAO, Treelet, using CONSTANT, symbolic only.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 3, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 1, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = ds_name + '.' + kernel_options['name'] + '.symb.pytest/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert', 'random']:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- try:
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required, cut_range=range(0, 4))
- except Exception as exception:
- assert False, exception
|