You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

shortest_path.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Apr 7 15:24:58 2020
  5. @author: ljia
  6. @references:
  7. [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData
  8. Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.
  9. """
  10. import sys
  11. from itertools import product
  12. # from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import numpy as np
  16. from gklearn.utils.parallel import parallel_gm, parallel_me
  17. from gklearn.utils.utils import getSPGraph
  18. from gklearn.kernels import GraphKernel
  19. class ShortestPath(GraphKernel):
  20. def __init__(self, **kwargs):
  21. GraphKernel.__init__(self)
  22. self._node_labels = kwargs.get('node_labels', [])
  23. self._node_attrs = kwargs.get('node_attrs', [])
  24. self._edge_weight = kwargs.get('edge_weight', None)
  25. self._node_kernels = kwargs.get('node_kernels', None)
  26. self._fcsp = kwargs.get('fcsp', True)
  27. self._ds_infos = kwargs.get('ds_infos', {})
  28. def _compute_gm_series(self):
  29. # get shortest path graph of each graph.
  30. if self._verbose >= 2:
  31. iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
  32. else:
  33. iterator = self._graphs
  34. self._graphs = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator]
  35. # compute Gram matrix.
  36. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  37. from itertools import combinations_with_replacement
  38. itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
  39. if self._verbose >= 2:
  40. iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
  41. else:
  42. iterator = itr
  43. for i, j in iterator:
  44. kernel = self._sp_do(self._graphs[i], self._graphs[j])
  45. gram_matrix[i][j] = kernel
  46. gram_matrix[j][i] = kernel
  47. return gram_matrix
  48. def _compute_gm_imap_unordered(self):
  49. # get shortest path graph of each graph.
  50. pool = Pool(self._n_jobs)
  51. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  52. itr = zip(self._graphs, range(0, len(self._graphs)))
  53. if len(self._graphs) < 100 * self._n_jobs:
  54. chunksize = int(len(self._graphs) / self._n_jobs) + 1
  55. else:
  56. chunksize = 100
  57. if self._verbose >= 2:
  58. iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  59. desc='getting sp graphs', file=sys.stdout)
  60. else:
  61. iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize)
  62. for i, g in iterator:
  63. self._graphs[i] = g
  64. pool.close()
  65. pool.join()
  66. # compute Gram matrix.
  67. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  68. def init_worker(gs_toshare):
  69. global G_gs
  70. G_gs = gs_toshare
  71. do_fun = self._wrapper_sp_do
  72. parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
  73. glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose)
  74. return gram_matrix
  75. def _compute_kernel_list_series(self, g1, g_list):
  76. # get shortest path graphs of g1 and each graph in g_list.
  77. g1 = getSPGraph(g1, edge_weight=self._edge_weight)
  78. if self._verbose >= 2:
  79. iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
  80. else:
  81. iterator = g_list
  82. g_list = [getSPGraph(g, edge_weight=self._edge_weight) for g in iterator]
  83. # compute kernel list.
  84. kernel_list = [None] * len(g_list)
  85. if self._verbose >= 2:
  86. iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
  87. else:
  88. iterator = range(len(g_list))
  89. for i in iterator:
  90. kernel = self._sp_do(g1, g_list[i])
  91. kernel_list[i] = kernel
  92. return kernel_list
  93. def _compute_kernel_list_imap_unordered(self, g1, g_list):
  94. # get shortest path graphs of g1 and each graph in g_list.
  95. g1 = getSPGraph(g1, edge_weight=self._edge_weight)
  96. pool = Pool(self._n_jobs)
  97. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  98. itr = zip(g_list, range(0, len(g_list)))
  99. if len(g_list) < 100 * self._n_jobs:
  100. chunksize = int(len(g_list) / self._n_jobs) + 1
  101. else:
  102. chunksize = 100
  103. if self._verbose >= 2:
  104. iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  105. desc='getting sp graphs', file=sys.stdout)
  106. else:
  107. iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize)
  108. for i, g in iterator:
  109. g_list[i] = g
  110. pool.close()
  111. pool.join()
  112. # compute Gram matrix.
  113. kernel_list = [None] * len(g_list)
  114. def init_worker(g1_toshare, gl_toshare):
  115. global G_g1, G_gl
  116. G_g1 = g1_toshare
  117. G_gl = gl_toshare
  118. do_fun = self._wrapper_kernel_list_do
  119. def func_assign(result, var_to_assign):
  120. var_to_assign[result[0]] = result[1]
  121. itr = range(len(g_list))
  122. len_itr = len(g_list)
  123. parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
  124. init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
  125. return kernel_list
  126. def _wrapper_kernel_list_do(self, itr):
  127. return itr, self._sp_do(G_g1, G_gl[itr])
  128. def _compute_single_kernel_series(self, g1, g2):
  129. g1 = getSPGraph(g1, edge_weight=self._edge_weight)
  130. g2 = getSPGraph(g2, edge_weight=self._edge_weight)
  131. kernel = self._sp_do(g1, g2)
  132. return kernel
  133. def _wrapper_get_sp_graphs(self, itr_item):
  134. g = itr_item[0]
  135. i = itr_item[1]
  136. return i, getSPGraph(g, edge_weight=self._edge_weight)
  137. def _sp_do(self, g1, g2):
  138. if self._fcsp: # @todo: it may be put outside the _sp_do().
  139. return self._sp_do_fcsp(g1, g2)
  140. else:
  141. return self._sp_do_naive(g1, g2)
  142. def _sp_do_fcsp(self, g1, g2):
  143. kernel = 0
  144. # compute shortest path matrices first, method borrowed from FCSP.
  145. vk_dict = {} # shortest path matrices dict
  146. if len(self._node_labels) > 0: # @todo: it may be put outside the _sp_do().
  147. # node symb and non-synb labeled
  148. if len(self._node_attrs) > 0:
  149. kn = self._node_kernels['mix']
  150. for n1, n2 in product(
  151. g1.nodes(data=True), g2.nodes(data=True)):
  152. n1_labels = [n1[1][nl] for nl in self._node_labels]
  153. n2_labels = [n2[1][nl] for nl in self._node_labels]
  154. n1_attrs = [n1[1][na] for na in self._node_attrs]
  155. n2_attrs = [n2[1][na] for na in self._node_attrs]
  156. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  157. # node symb labeled
  158. else:
  159. kn = self._node_kernels['symb']
  160. for n1 in g1.nodes(data=True):
  161. for n2 in g2.nodes(data=True):
  162. n1_labels = [n1[1][nl] for nl in self._node_labels]
  163. n2_labels = [n2[1][nl] for nl in self._node_labels]
  164. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
  165. else:
  166. # node non-synb labeled
  167. if len(self._node_attrs) > 0:
  168. kn = self._node_kernels['nsymb']
  169. for n1 in g1.nodes(data=True):
  170. for n2 in g2.nodes(data=True):
  171. n1_attrs = [n1[1][na] for na in self._node_attrs]
  172. n2_attrs = [n2[1][na] for na in self._node_attrs]
  173. vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
  174. # node unlabeled
  175. else:
  176. for e1, e2 in product(
  177. g1.edges(data=True), g2.edges(data=True)):
  178. if e1[2]['cost'] == e2[2]['cost']:
  179. kernel += 1
  180. return kernel
  181. # compute graph kernels
  182. if self._ds_infos['directed']:
  183. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  184. if e1[2]['cost'] == e2[2]['cost']:
  185. nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], e2[1])]
  186. kn1 = nk11 * nk22
  187. kernel += kn1
  188. else:
  189. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  190. if e1[2]['cost'] == e2[2]['cost']:
  191. # each edge walk is counted twice, starting from both its extreme nodes.
  192. nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(
  193. e1[0], e2[1])], vk_dict[(e1[1], e2[0])], vk_dict[(e1[1], e2[1])]
  194. kn1 = nk11 * nk22
  195. kn2 = nk12 * nk21
  196. kernel += kn1 + kn2
  197. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  198. # # compute vertex kernels
  199. # try:
  200. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  201. # nx.number_of_nodes(g2)))
  202. # g1nl = enumerate(g1.nodes(data=True))
  203. # g2nl = enumerate(g2.nodes(data=True))
  204. # for i1, n1 in g1nl:
  205. # for i2, n2 in g2nl:
  206. # vk_mat[i1][i2] = kn(
  207. # n1[1][node_label], n2[1][node_label],
  208. # [n1[1]['attributes']], [n2[1]['attributes']])
  209. # range1 = range(0, len(edge_w_g[i]))
  210. # range2 = range(0, len(edge_w_g[j]))
  211. # for i1 in range1:
  212. # x1 = edge_x_g[i][i1]
  213. # y1 = edge_y_g[i][i1]
  214. # w1 = edge_w_g[i][i1]
  215. # for i2 in range2:
  216. # x2 = edge_x_g[j][i2]
  217. # y2 = edge_y_g[j][i2]
  218. # w2 = edge_w_g[j][i2]
  219. # ke = (w1 == w2)
  220. # if ke > 0:
  221. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  222. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  223. # kernel += kn1 + kn2
  224. return kernel
  225. def _sp_do_naive(self, g1, g2):
  226. kernel = 0
  227. # Define the function to compute kernels between vertices in each condition.
  228. if len(self._node_labels) > 0:
  229. # node symb and non-synb labeled
  230. if len(self._node_attrs) > 0:
  231. def compute_vk(n1, n2):
  232. kn = self._node_kernels['mix']
  233. n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels]
  234. n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels]
  235. n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs]
  236. n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs]
  237. return kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  238. # node symb labeled
  239. else:
  240. def compute_vk(n1, n2):
  241. kn = self._node_kernels['symb']
  242. n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels]
  243. n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels]
  244. return kn(n1_labels, n2_labels)
  245. else:
  246. # node non-synb labeled
  247. if len(self._node_attrs) > 0:
  248. def compute_vk(n1, n2):
  249. kn = self._node_kernels['nsymb']
  250. n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs]
  251. n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs]
  252. return kn(n1_attrs, n2_attrs)
  253. # node unlabeled
  254. else:
  255. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  256. if e1[2]['cost'] == e2[2]['cost']:
  257. kernel += 1
  258. return kernel
  259. # compute graph kernels
  260. if self._ds_infos['directed']:
  261. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  262. if e1[2]['cost'] == e2[2]['cost']:
  263. nk11, nk22 = compute_vk(e1[0], e2[0]), compute_vk(e1[1], e2[1])
  264. kn1 = nk11 * nk22
  265. kernel += kn1
  266. else:
  267. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  268. if e1[2]['cost'] == e2[2]['cost']:
  269. # each edge walk is counted twice, starting from both its extreme nodes.
  270. nk11, nk12, nk21, nk22 = compute_vk(e1[0], e2[0]), compute_vk(
  271. e1[0], e2[1]), compute_vk(e1[1], e2[0]), compute_vk(e1[1], e2[1])
  272. kn1 = nk11 * nk22
  273. kn2 = nk12 * nk21
  274. kernel += kn1 + kn2
  275. return kernel
  276. def _wrapper_sp_do(self, itr):
  277. i = itr[0]
  278. j = itr[1]
  279. return i, j, self._sp_do(G_gs[i], G_gs[j])

A Python package for graph kernels, graph edit distances and graph pre-image problem.