You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

structural_sp.py 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Mon Mar 30 11:59:57 2020
  5. @author: ljia
  6. @references:
  7. [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
  8. Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
  9. """
  10. import sys
  11. from itertools import product
  12. # from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. # import networkx as nx
  16. import numpy as np
  17. from gklearn.utils.parallel import parallel_gm, parallel_me
  18. from gklearn.utils.utils import get_shortest_paths, compute_vertex_kernels
  19. from gklearn.kernels import GraphKernel
  20. class StructuralSP(GraphKernel):
  21. def __init__(self, **kwargs):
  22. GraphKernel.__init__(self)
  23. self._node_labels = kwargs.get('node_labels', [])
  24. self._edge_labels = kwargs.get('edge_labels', [])
  25. self._node_attrs = kwargs.get('node_attrs', [])
  26. self._edge_attrs = kwargs.get('edge_attrs', [])
  27. self._edge_weight = kwargs.get('edge_weight', None)
  28. self._node_kernels = kwargs.get('node_kernels', None)
  29. self._edge_kernels = kwargs.get('edge_kernels', None)
  30. self._compute_method = kwargs.get('compute_method', 'naive')
  31. self._fcsp = kwargs.get('fcsp', True)
  32. self._ds_infos = kwargs.get('ds_infos', {})
  33. def _compute_gm_series(self):
  34. # get shortest paths of each graph in the graphs.
  35. splist = []
  36. if self._verbose >= 2:
  37. iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
  38. else:
  39. iterator = self._graphs
  40. if self._compute_method == 'trie':
  41. for g in iterator:
  42. splist.append(self._get_sps_as_trie(g))
  43. else:
  44. for g in iterator:
  45. splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']))
  46. # compute Gram matrix.
  47. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  48. from itertools import combinations_with_replacement
  49. itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
  50. if self._verbose >= 2:
  51. iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
  52. else:
  53. iterator = itr
  54. if self._compute_method == 'trie':
  55. for i, j in iterator:
  56. kernel = self._ssp_do_trie(self._graphs[i], self._graphs[j], splist[i], splist[j])
  57. gram_matrix[i][j] = kernel
  58. gram_matrix[j][i] = kernel
  59. else:
  60. for i, j in iterator:
  61. kernel = self._ssp_do_naive(self._graphs[i], self._graphs[j], splist[i], splist[j])
  62. # if(kernel > 1):
  63. # print("error here ")
  64. gram_matrix[i][j] = kernel
  65. gram_matrix[j][i] = kernel
  66. return gram_matrix
  67. def _compute_gm_imap_unordered(self):
  68. # get shortest paths of each graph in the graphs.
  69. splist = [None] * len(self._graphs)
  70. pool = Pool(self._n_jobs)
  71. itr = zip(self._graphs, range(0, len(self._graphs)))
  72. if len(self._graphs) < 100 * self._n_jobs:
  73. chunksize = int(len(self._graphs) / self._n_jobs) + 1
  74. else:
  75. chunksize = 100
  76. # get shortest path graphs of self._graphs
  77. if self._compute_method == 'trie':
  78. get_sps_fun = self._wrapper_get_sps_trie
  79. else:
  80. get_sps_fun = self._wrapper_get_sps_naive
  81. if self.verbose >= 2:
  82. iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize),
  83. desc='getting shortest paths', file=sys.stdout)
  84. else:
  85. iterator = pool.imap_unordered(get_sps_fun, itr, chunksize)
  86. for i, sp in iterator:
  87. splist[i] = sp
  88. pool.close()
  89. pool.join()
  90. # compute Gram matrix.
  91. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  92. def init_worker(spl_toshare, gs_toshare):
  93. global G_spl, G_gs
  94. G_spl = spl_toshare
  95. G_gs = gs_toshare
  96. if self._compute_method == 'trie':
  97. do_fun = self._wrapper_ssp_do_trie
  98. else:
  99. do_fun = self._wrapper_ssp_do_naive
  100. parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
  101. glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose)
  102. return gram_matrix
  103. def _compute_kernel_list_series(self, g1, g_list):
  104. # get shortest paths of g1 and each graph in g_list.
  105. sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed'])
  106. splist = []
  107. if self._verbose >= 2:
  108. iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
  109. else:
  110. iterator = g_list
  111. if self._compute_method == 'trie':
  112. for g in iterator:
  113. splist.append(self._get_sps_as_trie(g))
  114. else:
  115. for g in iterator:
  116. splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']))
  117. # compute kernel list.
  118. kernel_list = [None] * len(g_list)
  119. if self._verbose >= 2:
  120. iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
  121. else:
  122. iterator = range(len(g_list))
  123. if self._compute_method == 'trie':
  124. for i in iterator:
  125. kernel = self._ssp_do_trie(g1, g_list[i], sp1, splist[i])
  126. kernel_list[i] = kernel
  127. else:
  128. for i in iterator:
  129. kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i])
  130. kernel_list[i] = kernel
  131. return kernel_list
  132. def _compute_kernel_list_imap_unordered(self, g1, g_list):
  133. # get shortest paths of g1 and each graph in g_list.
  134. sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed'])
  135. splist = [None] * len(g_list)
  136. pool = Pool(self._n_jobs)
  137. itr = zip(g_list, range(0, len(g_list)))
  138. if len(g_list) < 100 * self._n_jobs:
  139. chunksize = int(len(g_list) / self._n_jobs) + 1
  140. else:
  141. chunksize = 100
  142. # get shortest path graphs of g_list
  143. if self._compute_method == 'trie':
  144. get_sps_fun = self._wrapper_get_sps_trie
  145. else:
  146. get_sps_fun = self._wrapper_get_sps_naive
  147. if self.verbose >= 2:
  148. iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize),
  149. desc='getting shortest paths', file=sys.stdout)
  150. else:
  151. iterator = pool.imap_unordered(get_sps_fun, itr, chunksize)
  152. for i, sp in iterator:
  153. splist[i] = sp
  154. pool.close()
  155. pool.join()
  156. # compute Gram matrix.
  157. kernel_list = [None] * len(g_list)
  158. def init_worker(sp1_toshare, spl_toshare, g1_toshare, gl_toshare):
  159. global G_sp1, G_spl, G_g1, G_gl
  160. G_sp1 = sp1_toshare
  161. G_spl = spl_toshare
  162. G_g1 = g1_toshare
  163. G_gl = gl_toshare
  164. if self._compute_method == 'trie':
  165. do_fun = self._wrapper_ssp_do_trie
  166. else:
  167. do_fun = self._wrapper_kernel_list_do
  168. def func_assign(result, var_to_assign):
  169. var_to_assign[result[0]] = result[1]
  170. itr = range(len(g_list))
  171. len_itr = len(g_list)
  172. parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
  173. init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
  174. return kernel_list
  175. def _wrapper_kernel_list_do(self, itr):
  176. return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr])
  177. def _compute_single_kernel_series(self, g1, g2):
  178. sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed'])
  179. sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed'])
  180. if self._compute_method == 'trie':
  181. kernel = self._ssp_do_trie(g1, g2, sp1, sp2)
  182. else:
  183. kernel = self._ssp_do_naive(g1, g2, sp1, sp2)
  184. return kernel
  185. def _wrapper_get_sps_naive(self, itr_item):
  186. g = itr_item[0]
  187. i = itr_item[1]
  188. return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])
  189. def _ssp_do_naive(self, g1, g2, spl1, spl2):
  190. if self._fcsp: # @todo: it may be put outside the _sp_do().
  191. return self._sp_do_naive_fcsp(g1, g2, spl1, spl2)
  192. else:
  193. return self._sp_do_naive_naive(g1, g2, spl1, spl2)
  194. def _sp_do_naive_fcsp(self, g1, g2, spl1, spl2):
  195. kernel = 0
  196. # First, compute shortest path matrices, method borrowed from FCSP.
  197. vk_dict = self._get_all_node_kernels(g1, g2)
  198. # Then, compute kernels between all pairs of edges, which is an idea of
  199. # extension of FCSP. It suits sparse graphs, which is the most case we
  200. # went though. For dense graphs, this would be slow.
  201. ek_dict = self._get_all_edge_kernels(g1, g2)
  202. # compute graph kernels
  203. if vk_dict:
  204. if ek_dict:
  205. for p1, p2 in product(spl1, spl2):
  206. if len(p1) == len(p2):
  207. kpath = vk_dict[(p1[0], p2[0])]
  208. if kpath:
  209. for idx in range(1, len(p1)):
  210. kpath *= vk_dict[(p1[idx], p2[idx])] * \
  211. ek_dict[((p1[idx-1], p1[idx]),
  212. (p2[idx-1], p2[idx]))]
  213. if not kpath:
  214. break
  215. kernel += kpath # add up kernels of all paths
  216. else:
  217. for p1, p2 in product(spl1, spl2):
  218. if len(p1) == len(p2):
  219. kpath = vk_dict[(p1[0], p2[0])]
  220. if kpath:
  221. for idx in range(1, len(p1)):
  222. kpath *= vk_dict[(p1[idx], p2[idx])]
  223. if not kpath:
  224. break
  225. kernel += kpath # add up kernels of all paths
  226. else:
  227. if ek_dict:
  228. for p1, p2 in product(spl1, spl2):
  229. if len(p1) == len(p2):
  230. if len(p1) == 0:
  231. kernel += 1
  232. else:
  233. kpath = 1
  234. for idx in range(0, len(p1) - 1):
  235. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  236. (p2[idx], p2[idx+1]))]
  237. if not kpath:
  238. break
  239. kernel += kpath # add up kernels of all paths
  240. else:
  241. for p1, p2 in product(spl1, spl2):
  242. if len(p1) == len(p2):
  243. kernel += 1
  244. try:
  245. kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average
  246. except ZeroDivisionError:
  247. print(spl1, spl2)
  248. print(g1.nodes(data=True))
  249. print(g1.edges(data=True))
  250. raise Exception
  251. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  252. # # compute vertex kernel matrix
  253. # try:
  254. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  255. # nx.number_of_nodes(g2)))
  256. # g1nl = enumerate(g1.nodes(data=True))
  257. # g2nl = enumerate(g2.nodes(data=True))
  258. # for i1, n1 in g1nl:
  259. # for i2, n2 in g2nl:
  260. # vk_mat[i1][i2] = kn(
  261. # n1[1][node_label], n2[1][node_label],
  262. # [n1[1]['attributes']], [n2[1]['attributes']])
  263. # range1 = range(0, len(edge_w_g[i]))
  264. # range2 = range(0, len(edge_w_g[j]))
  265. # for i1 in range1:
  266. # x1 = edge_x_g[i][i1]
  267. # y1 = edge_y_g[i][i1]
  268. # w1 = edge_w_g[i][i1]
  269. # for i2 in range2:
  270. # x2 = edge_x_g[j][i2]
  271. # y2 = edge_y_g[j][i2]
  272. # w2 = edge_w_g[j][i2]
  273. # ke = (w1 == w2)
  274. # if ke > 0:
  275. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  276. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  277. # Kmatrix += kn1 + kn2
  278. return kernel
  279. def _sp_do_naive_naive(self, g1, g2, spl1, spl2):
  280. kernel = 0
  281. # Define the function to compute kernels between vertices in each condition.
  282. if len(self._node_labels) > 0:
  283. # node symb and non-synb labeled
  284. if len(self._node_attrs) > 0:
  285. def compute_vk(n1, n2):
  286. kn = self._node_kernels['mix']
  287. n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels]
  288. n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels]
  289. n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs]
  290. n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs]
  291. return kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  292. # node symb labeled
  293. else:
  294. def compute_vk(n1, n2):
  295. kn = self._node_kernels['symb']
  296. n1_labels = [g1.nodes[n1][nl] for nl in self._node_labels]
  297. n2_labels = [g2.nodes[n2][nl] for nl in self._node_labels]
  298. return kn(n1_labels, n2_labels)
  299. else:
  300. # node non-synb labeled
  301. if len(self._node_attrs) > 0:
  302. def compute_vk(n1, n2):
  303. kn = self._node_kernels['nsymb']
  304. n1_attrs = [g1.nodes[n1][na] for na in self._node_attrs]
  305. n2_attrs = [g2.nodes[n2][na] for na in self._node_attrs]
  306. return kn(n1_attrs, n2_attrs)
  307. # # node unlabeled
  308. # else:
  309. # for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  310. # if e1[2]['cost'] == e2[2]['cost']:
  311. # kernel += 1
  312. # return kernel
  313. # Define the function to compute kernels between edges in each condition.
  314. if len(self._edge_labels) > 0:
  315. # edge symb and non-synb labeled
  316. if len(self._edge_attrs) > 0:
  317. def compute_ek(e1, e2):
  318. ke = self._edge_kernels['mix']
  319. e1_labels = [g1.edges[e1][el] for el in self._edge_labels]
  320. e2_labels = [g2.edges[e2][el] for el in self._edge_labels]
  321. e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs]
  322. e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs]
  323. return ke(e1_labels, e2_labels, e1_attrs, e2_attrs)
  324. # edge symb labeled
  325. else:
  326. def compute_ek(e1, e2):
  327. ke = self._edge_kernels['symb']
  328. e1_labels = [g1.edges[e1][el] for el in self._edge_labels]
  329. e2_labels = [g2.edges[e2][el] for el in self._edge_labels]
  330. return ke(e1_labels, e2_labels)
  331. else:
  332. # edge non-synb labeled
  333. if len(self._edge_attrs) > 0:
  334. def compute_ek(e1, e2):
  335. ke = self._edge_kernels['nsymb']
  336. e1_attrs = [g1.edges[e1][ea] for ea in self._edge_attrs]
  337. e2_attrs = [g2.edges[e2][ea] for ea in self._edge_attrs]
  338. return ke(e1_attrs, e2_attrs)
  339. # compute graph kernels
  340. if len(self._node_labels) > 0 or len(self._node_attrs) > 0:
  341. if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0:
  342. for p1, p2 in product(spl1, spl2):
  343. if len(p1) == len(p2):
  344. kpath = compute_vk(p1[0], p2[0])
  345. if kpath:
  346. for idx in range(1, len(p1)):
  347. kpath *= compute_vk(p1[idx], p2[idx]) * \
  348. compute_ek((p1[idx-1], p1[idx]),
  349. (p2[idx-1], p2[idx]))
  350. if not kpath:
  351. break
  352. kernel += kpath # add up kernels of all paths
  353. else:
  354. for p1, p2 in product(spl1, spl2):
  355. if len(p1) == len(p2):
  356. kpath = compute_vk(p1[0], p2[0])
  357. if kpath:
  358. for idx in range(1, len(p1)):
  359. kpath *= compute_vk(p1[idx], p2[idx])
  360. if not kpath:
  361. break
  362. kernel += kpath # add up kernels of all paths
  363. else:
  364. if len(self._edge_labels) > 0 or len(self._edge_attrs) > 0:
  365. for p1, p2 in product(spl1, spl2):
  366. if len(p1) == len(p2):
  367. if len(p1) == 0:
  368. kernel += 1
  369. else:
  370. kpath = 1
  371. for idx in range(0, len(p1) - 1):
  372. kpath *= compute_ek((p1[idx], p1[idx+1]),
  373. (p2[idx], p2[idx+1]))
  374. if not kpath:
  375. break
  376. kernel += kpath # add up kernels of all paths
  377. else:
  378. for p1, p2 in product(spl1, spl2):
  379. if len(p1) == len(p2):
  380. kernel += 1
  381. try:
  382. kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average
  383. except ZeroDivisionError:
  384. print(spl1, spl2)
  385. print(g1.nodes(data=True))
  386. print(g1.edges(data=True))
  387. raise Exception
  388. return kernel
  389. def _wrapper_ssp_do_naive(self, itr):
  390. i = itr[0]
  391. j = itr[1]
  392. return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j])
  393. def _get_all_node_kernels(self, g1, g2):
  394. return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs)
  395. def _get_all_edge_kernels(self, g1, g2):
  396. # compute kernels between all pairs of edges, which is an idea of
  397. # extension of FCSP. It suits sparse graphs, which is the most case we
  398. # went though. For dense graphs, this would be slow.
  399. ek_dict = {} # dict of edge kernels
  400. if len(self._edge_labels) > 0:
  401. # edge symb and non-synb labeled
  402. if len(self._edge_attrs) > 0:
  403. ke = self._edge_kernels['mix']
  404. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  405. e1_labels = [e1[2][el] for el in self._edge_labels]
  406. e2_labels = [e2[2][el] for el in self._edge_labels]
  407. e1_attrs = [e1[2][ea] for ea in self._edge_attrs]
  408. e2_attrs = [e2[2][ea] for ea in self._edge_attrs]
  409. ek_temp = ke(e1_labels, e2_labels, e1_attrs, e2_attrs)
  410. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  411. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  412. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  413. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  414. # edge symb labeled
  415. else:
  416. ke = self._edge_kernels['symb']
  417. for e1 in g1.edges(data=True):
  418. for e2 in g2.edges(data=True):
  419. e1_labels = [e1[2][el] for el in self._edge_labels]
  420. e2_labels = [e2[2][el] for el in self._edge_labels]
  421. ek_temp = ke(e1_labels, e2_labels)
  422. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  423. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  424. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  425. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  426. else:
  427. # edge non-synb labeled
  428. if len(self._edge_attrs) > 0:
  429. ke = self._edge_kernels['nsymb']
  430. for e1 in g1.edges(data=True):
  431. for e2 in g2.edges(data=True):
  432. e1_attrs = [e1[2][ea] for ea in self._edge_attrs]
  433. e2_attrs = [e2[2][ea] for ea in self._edge_attrs]
  434. ek_temp = ke(e1_attrs, e2_attrs)
  435. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  436. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  437. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  438. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  439. # edge unlabeled
  440. else:
  441. pass
  442. return ek_dict

A Python package for graph kernels, graph edit distances and graph pre-image problem.