You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

xp_median_preimage.py 85 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 14 15:39:29 2020
  5. @author: ljia
  6. """
  7. import multiprocessing
  8. import functools
  9. import sys
  10. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  11. from gklearn.preimage.utils import generate_median_preimages_by_class
  12. from gklearn.utils import compute_gram_matrices_by_class
  13. def xp_median_preimage_13_1():
  14. """xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  15. """
  16. # set parameters.
  17. ds_name = 'PAH' #
  18. mpg_options = {'fit_method': 'k-graphs',
  19. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  20. 'ds_name': ds_name,
  21. 'parallel': True, # False
  22. 'time_limit_in_sec': 0,
  23. 'max_itrs': 100, #
  24. 'max_itrs_without_update': 3,
  25. 'epsilon_residual': 0.01,
  26. 'epsilon_ec': 0.1,
  27. 'verbose': 2}
  28. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  29. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  30. kernel_options = {'name': 'StructuralSP',
  31. 'edge_weight': None,
  32. 'node_kernels': sub_kernels,
  33. 'edge_kernels': sub_kernels,
  34. 'compute_method': 'naive',
  35. 'parallel': 'imap_unordered',
  36. # 'parallel': None,
  37. 'n_jobs': multiprocessing.cpu_count(),
  38. 'normalize': True,
  39. 'verbose': 2}
  40. ged_options = {'method': 'IPFP',
  41. 'initialization_method': 'RANDOM', # 'NODE'
  42. 'initial_solutions': 10, # 1
  43. 'edit_cost': 'NON_SYMBOLIC', #
  44. 'attr_distance': 'euclidean',
  45. 'ratio_runs_from_initial_solutions': 1,
  46. 'threads': multiprocessing.cpu_count(),
  47. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  48. mge_options = {'init_type': 'MEDOID',
  49. 'random_inits': 10,
  50. 'time_limit': 600,
  51. 'verbose': 2,
  52. 'update_order': False,
  53. 'refine': False}
  54. save_results = True
  55. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  56. irrelevant_labels = None #
  57. edge_required = False #
  58. # print settings.
  59. file_output = open(dir_save + 'output.txt', 'w')
  60. sys.stdout = file_output
  61. print('parameters:')
  62. print('dataset name:', ds_name)
  63. print('mpg_options:', mpg_options)
  64. print('kernel_options:', kernel_options)
  65. print('ged_options:', ged_options)
  66. print('mge_options:', mge_options)
  67. print('save_results:', save_results)
  68. print('irrelevant_labels:', irrelevant_labels)
  69. print()
  70. # generate preimages.
  71. for fit_method in ['k-graphs'] + ['random'] * 5:
  72. print('\n-------------------------------------')
  73. print('fit method:', fit_method, '\n')
  74. mpg_options['fit_method'] = fit_method
  75. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  76. def xp_median_preimage_13_2():
  77. """xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  78. """
  79. # set parameters.
  80. ds_name = 'PAH' #
  81. mpg_options = {'fit_method': 'k-graphs',
  82. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  83. 'ds_name': ds_name,
  84. 'parallel': True, # False
  85. 'time_limit_in_sec': 0,
  86. 'max_itrs': 100,
  87. 'max_itrs_without_update': 3,
  88. 'epsilon_residual': 0.01,
  89. 'epsilon_ec': 0.1,
  90. 'verbose': 2}
  91. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  92. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  93. kernel_options = {'name': 'ShortestPath',
  94. 'edge_weight': None,
  95. 'node_kernels': sub_kernels,
  96. 'parallel': 'imap_unordered',
  97. # 'parallel': None,
  98. 'n_jobs': multiprocessing.cpu_count(),
  99. 'normalize': True,
  100. 'verbose': 2}
  101. ged_options = {'method': 'IPFP',
  102. 'initialization_method': 'RANDOM', # 'NODE'
  103. 'initial_solutions': 10, # 1
  104. 'edit_cost': 'NON_SYMBOLIC', #
  105. 'attr_distance': 'euclidean',
  106. 'ratio_runs_from_initial_solutions': 1,
  107. 'threads': multiprocessing.cpu_count(),
  108. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  109. mge_options = {'init_type': 'MEDOID',
  110. 'random_inits': 10,
  111. 'time_limit': 600,
  112. 'verbose': 2,
  113. 'update_order': False,
  114. 'refine': False}
  115. save_results = True
  116. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' #
  117. irrelevant_labels = None #
  118. edge_required = True #
  119. # print settings.
  120. file_output = open(dir_save + 'output.txt', 'w')
  121. sys.stdout = file_output
  122. print('parameters:')
  123. print('dataset name:', ds_name)
  124. print('mpg_options:', mpg_options)
  125. print('kernel_options:', kernel_options)
  126. print('ged_options:', ged_options)
  127. print('mge_options:', mge_options)
  128. print('save_results:', save_results)
  129. print('irrelevant_labels:', irrelevant_labels)
  130. print()
  131. # generate preimages.
  132. for fit_method in ['k-graphs'] + ['random'] * 5: #
  133. print('\n-------------------------------------')
  134. print('fit method:', fit_method, '\n')
  135. mpg_options['fit_method'] = fit_method
  136. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  137. def xp_median_preimage_12_1():
  138. """xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  139. """
  140. # set parameters.
  141. ds_name = 'PAH' #
  142. mpg_options = {'fit_method': 'k-graphs',
  143. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  144. 'ds_name': ds_name,
  145. 'parallel': True, # False
  146. 'time_limit_in_sec': 0,
  147. 'max_itrs': 100, #
  148. 'max_itrs_without_update': 3,
  149. 'epsilon_residual': 0.01,
  150. 'epsilon_ec': 0.1,
  151. 'verbose': 2}
  152. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  153. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  154. kernel_options = {'name': 'StructuralSP',
  155. 'edge_weight': None,
  156. 'node_kernels': sub_kernels,
  157. 'edge_kernels': sub_kernels,
  158. 'compute_method': 'naive',
  159. 'parallel': 'imap_unordered',
  160. # 'parallel': None,
  161. 'n_jobs': multiprocessing.cpu_count(),
  162. 'normalize': True,
  163. 'verbose': 2}
  164. ged_options = {'method': 'IPFP',
  165. 'initialization_method': 'RANDOM', # 'NODE'
  166. 'initial_solutions': 10, # 1
  167. 'edit_cost': 'NON_SYMBOLIC', #
  168. 'attr_distance': 'euclidean',
  169. 'ratio_runs_from_initial_solutions': 1,
  170. 'threads': multiprocessing.cpu_count(),
  171. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  172. mge_options = {'init_type': 'MEDOID',
  173. 'random_inits': 10,
  174. 'time_limit': 600,
  175. 'verbose': 2,
  176. 'update_order': False,
  177. 'refine': False}
  178. save_results = True
  179. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  180. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  181. edge_required = False #
  182. # print settings.
  183. file_output = open(dir_save + 'output.txt', 'w')
  184. sys.stdout = file_output
  185. print('parameters:')
  186. print('dataset name:', ds_name)
  187. print('mpg_options:', mpg_options)
  188. print('kernel_options:', kernel_options)
  189. print('ged_options:', ged_options)
  190. print('mge_options:', mge_options)
  191. print('save_results:', save_results)
  192. print('irrelevant_labels:', irrelevant_labels)
  193. print()
  194. # generate preimages.
  195. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  196. print('\n-------------------------------------')
  197. print('fit method:', fit_method, '\n')
  198. mpg_options['fit_method'] = fit_method
  199. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  200. def xp_median_preimage_12_2():
  201. """xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  202. """
  203. # set parameters.
  204. ds_name = 'PAH' #
  205. mpg_options = {'fit_method': 'k-graphs',
  206. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  207. 'ds_name': ds_name,
  208. 'parallel': True, # False
  209. 'time_limit_in_sec': 0,
  210. 'max_itrs': 100, #
  211. 'max_itrs_without_update': 3,
  212. 'epsilon_residual': 0.01,
  213. 'epsilon_ec': 0.1,
  214. 'verbose': 2}
  215. kernel_options = {'name': 'PathUpToH',
  216. 'depth': 1, #
  217. 'k_func': 'MinMax', #
  218. 'compute_method': 'trie',
  219. 'parallel': 'imap_unordered',
  220. # 'parallel': None,
  221. 'n_jobs': multiprocessing.cpu_count(),
  222. 'normalize': True,
  223. 'verbose': 2}
  224. ged_options = {'method': 'IPFP',
  225. 'initialization_method': 'RANDOM', # 'NODE'
  226. 'initial_solutions': 10, # 1
  227. 'edit_cost': 'CONSTANT', #
  228. 'attr_distance': 'euclidean',
  229. 'ratio_runs_from_initial_solutions': 1,
  230. 'threads': multiprocessing.cpu_count(),
  231. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  232. mge_options = {'init_type': 'MEDOID',
  233. 'random_inits': 10,
  234. 'time_limit': 600,
  235. 'verbose': 2,
  236. 'update_order': False,
  237. 'refine': False}
  238. save_results = True
  239. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  240. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  241. edge_required = False #
  242. # print settings.
  243. file_output = open(dir_save + 'output.txt', 'w')
  244. sys.stdout = file_output
  245. print('parameters:')
  246. print('dataset name:', ds_name)
  247. print('mpg_options:', mpg_options)
  248. print('kernel_options:', kernel_options)
  249. print('ged_options:', ged_options)
  250. print('mge_options:', mge_options)
  251. print('save_results:', save_results)
  252. print('irrelevant_labels:', irrelevant_labels)
  253. print()
  254. # generate preimages.
  255. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  256. print('\n-------------------------------------')
  257. print('fit method:', fit_method, '\n')
  258. mpg_options['fit_method'] = fit_method
  259. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  260. def xp_median_preimage_12_3():
  261. """xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  262. """
  263. from gklearn.utils.kernels import gaussiankernel
  264. # set parameters.
  265. ds_name = 'PAH' #
  266. mpg_options = {'fit_method': 'k-graphs',
  267. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  268. 'ds_name': ds_name,
  269. 'parallel': True, # False
  270. 'time_limit_in_sec': 0,
  271. 'max_itrs': 100, #
  272. 'max_itrs_without_update': 3,
  273. 'epsilon_residual': 0.01,
  274. 'epsilon_ec': 0.1,
  275. 'verbose': 2}
  276. pkernel = functools.partial(gaussiankernel, gamma=None) # @todo
  277. kernel_options = {'name': 'Treelet', #
  278. 'sub_kernel': pkernel,
  279. 'parallel': 'imap_unordered',
  280. # 'parallel': None,
  281. 'n_jobs': multiprocessing.cpu_count(),
  282. 'normalize': True,
  283. 'verbose': 2}
  284. ged_options = {'method': 'IPFP',
  285. 'initialization_method': 'RANDOM', # 'NODE'
  286. 'initial_solutions': 10, # 1
  287. 'edit_cost': 'CONSTANT', #
  288. 'attr_distance': 'euclidean',
  289. 'ratio_runs_from_initial_solutions': 1,
  290. 'threads': multiprocessing.cpu_count(),
  291. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  292. mge_options = {'init_type': 'MEDOID',
  293. 'random_inits': 10,
  294. 'time_limit': 600,
  295. 'verbose': 2,
  296. 'update_order': False,
  297. 'refine': False}
  298. save_results = True
  299. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  300. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  301. edge_required = False #
  302. # print settings.
  303. file_output = open(dir_save + 'output.txt', 'w')
  304. sys.stdout = file_output
  305. print('parameters:')
  306. print('dataset name:', ds_name)
  307. print('mpg_options:', mpg_options)
  308. print('kernel_options:', kernel_options)
  309. print('ged_options:', ged_options)
  310. print('mge_options:', mge_options)
  311. print('save_results:', save_results)
  312. print('irrelevant_labels:', irrelevant_labels)
  313. print()
  314. # generate preimages.
  315. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  316. print('\n-------------------------------------')
  317. print('fit method:', fit_method, '\n')
  318. mpg_options['fit_method'] = fit_method
  319. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  320. def xp_median_preimage_12_4():
  321. """xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  322. """
  323. # set parameters.
  324. ds_name = 'PAH' #
  325. mpg_options = {'fit_method': 'k-graphs',
  326. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  327. 'ds_name': ds_name,
  328. 'parallel': True, # False
  329. 'time_limit_in_sec': 0,
  330. 'max_itrs': 100, #
  331. 'max_itrs_without_update': 3,
  332. 'epsilon_residual': 0.01,
  333. 'epsilon_ec': 0.1,
  334. 'verbose': 2}
  335. kernel_options = {'name': 'WeisfeilerLehman',
  336. 'height': 14,
  337. 'base_kernel': 'subtree',
  338. 'parallel': 'imap_unordered',
  339. # 'parallel': None,
  340. 'n_jobs': multiprocessing.cpu_count(),
  341. 'normalize': True,
  342. 'verbose': 2}
  343. ged_options = {'method': 'IPFP',
  344. 'initialization_method': 'RANDOM', # 'NODE'
  345. 'initial_solutions': 10, # 1
  346. 'edit_cost': 'CONSTANT', #
  347. 'attr_distance': 'euclidean',
  348. 'ratio_runs_from_initial_solutions': 1,
  349. 'threads': multiprocessing.cpu_count(),
  350. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  351. mge_options = {'init_type': 'MEDOID',
  352. 'random_inits': 10,
  353. 'time_limit': 600,
  354. 'verbose': 2,
  355. 'update_order': False,
  356. 'refine': False}
  357. save_results = True
  358. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  359. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  360. edge_required = False #
  361. # print settings.
  362. file_output = open(dir_save + 'output.txt', 'w')
  363. sys.stdout = file_output
  364. print('parameters:')
  365. print('dataset name:', ds_name)
  366. print('mpg_options:', mpg_options)
  367. print('kernel_options:', kernel_options)
  368. print('ged_options:', ged_options)
  369. print('mge_options:', mge_options)
  370. print('save_results:', save_results)
  371. print('irrelevant_labels:', irrelevant_labels)
  372. print()
  373. # # compute gram matrices for each class a priori.
  374. # print('Compute gram matrices for each class a priori.')
  375. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  376. # generate preimages.
  377. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  378. print('\n-------------------------------------')
  379. print('fit method:', fit_method, '\n')
  380. mpg_options['fit_method'] = fit_method
  381. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  382. def xp_median_preimage_12_5():
  383. """xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  384. """
  385. # set parameters.
  386. ds_name = 'PAH' #
  387. mpg_options = {'fit_method': 'k-graphs',
  388. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  389. 'ds_name': ds_name,
  390. 'parallel': True, # False
  391. 'time_limit_in_sec': 0,
  392. 'max_itrs': 100,
  393. 'max_itrs_without_update': 3,
  394. 'epsilon_residual': 0.01,
  395. 'epsilon_ec': 0.1,
  396. 'verbose': 2}
  397. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  398. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  399. kernel_options = {'name': 'ShortestPath',
  400. 'edge_weight': None,
  401. 'node_kernels': sub_kernels,
  402. 'parallel': 'imap_unordered',
  403. # 'parallel': None,
  404. 'n_jobs': multiprocessing.cpu_count(),
  405. 'normalize': True,
  406. 'verbose': 2}
  407. ged_options = {'method': 'IPFP',
  408. 'initialization_method': 'RANDOM', # 'NODE'
  409. 'initial_solutions': 10, # 1
  410. 'edit_cost': 'NON_SYMBOLIC', #
  411. 'attr_distance': 'euclidean',
  412. 'ratio_runs_from_initial_solutions': 1,
  413. 'threads': multiprocessing.cpu_count(),
  414. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  415. mge_options = {'init_type': 'MEDOID',
  416. 'random_inits': 10,
  417. 'time_limit': 600,
  418. 'verbose': 2,
  419. 'update_order': False,
  420. 'refine': False}
  421. save_results = True
  422. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/' #
  423. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  424. edge_required = True #
  425. # print settings.
  426. file_output = open(dir_save + 'output.txt', 'w')
  427. sys.stdout = file_output
  428. print('parameters:')
  429. print('dataset name:', ds_name)
  430. print('mpg_options:', mpg_options)
  431. print('kernel_options:', kernel_options)
  432. print('ged_options:', ged_options)
  433. print('mge_options:', mge_options)
  434. print('save_results:', save_results)
  435. print('irrelevant_labels:', irrelevant_labels)
  436. print()
  437. # generate preimages.
  438. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: #
  439. print('\n-------------------------------------')
  440. print('fit method:', fit_method, '\n')
  441. mpg_options['fit_method'] = fit_method
  442. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  443. def xp_median_preimage_9_1():
  444. """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  445. """
  446. # set parameters.
  447. ds_name = 'MAO' #
  448. mpg_options = {'fit_method': 'k-graphs',
  449. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  450. 'ds_name': ds_name,
  451. 'parallel': True, # False
  452. 'time_limit_in_sec': 0,
  453. 'max_itrs': 100, #
  454. 'max_itrs_without_update': 3,
  455. 'epsilon_residual': 0.01,
  456. 'epsilon_ec': 0.1,
  457. 'verbose': 2}
  458. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  459. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  460. kernel_options = {'name': 'StructuralSP',
  461. 'edge_weight': None,
  462. 'node_kernels': sub_kernels,
  463. 'edge_kernels': sub_kernels,
  464. 'compute_method': 'naive',
  465. 'parallel': 'imap_unordered',
  466. # 'parallel': None,
  467. 'n_jobs': multiprocessing.cpu_count(),
  468. 'normalize': True,
  469. 'verbose': 2}
  470. ged_options = {'method': 'IPFP',
  471. 'initialization_method': 'RANDOM', # 'NODE'
  472. 'initial_solutions': 10, # 1
  473. 'edit_cost': 'CONSTANT', #
  474. 'attr_distance': 'euclidean',
  475. 'ratio_runs_from_initial_solutions': 1,
  476. 'threads': multiprocessing.cpu_count(),
  477. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  478. mge_options = {'init_type': 'MEDOID',
  479. 'random_inits': 10,
  480. 'time_limit': 600,
  481. 'verbose': 2,
  482. 'update_order': False,
  483. 'refine': False}
  484. save_results = True
  485. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  486. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  487. edge_required = False #
  488. # print settings.
  489. file_output = open(dir_save + 'output.txt', 'w')
  490. sys.stdout = file_output
  491. print('parameters:')
  492. print('dataset name:', ds_name)
  493. print('mpg_options:', mpg_options)
  494. print('kernel_options:', kernel_options)
  495. print('ged_options:', ged_options)
  496. print('mge_options:', mge_options)
  497. print('save_results:', save_results)
  498. print('irrelevant_labels:', irrelevant_labels)
  499. print()
  500. # generate preimages.
  501. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  502. print('\n-------------------------------------')
  503. print('fit method:', fit_method, '\n')
  504. mpg_options['fit_method'] = fit_method
  505. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  506. def xp_median_preimage_9_2():
  507. """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  508. """
  509. # set parameters.
  510. ds_name = 'MAO' #
  511. mpg_options = {'fit_method': 'k-graphs',
  512. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  513. 'ds_name': ds_name,
  514. 'parallel': True, # False
  515. 'time_limit_in_sec': 0,
  516. 'max_itrs': 100, #
  517. 'max_itrs_without_update': 3,
  518. 'epsilon_residual': 0.01,
  519. 'epsilon_ec': 0.1,
  520. 'verbose': 2}
  521. kernel_options = {'name': 'PathUpToH',
  522. 'depth': 9, #
  523. 'k_func': 'MinMax', #
  524. 'compute_method': 'trie',
  525. 'parallel': 'imap_unordered',
  526. # 'parallel': None,
  527. 'n_jobs': multiprocessing.cpu_count(),
  528. 'normalize': True,
  529. 'verbose': 2}
  530. ged_options = {'method': 'IPFP',
  531. 'initialization_method': 'RANDOM', # 'NODE'
  532. 'initial_solutions': 10, # 1
  533. 'edit_cost': 'CONSTANT', #
  534. 'attr_distance': 'euclidean',
  535. 'ratio_runs_from_initial_solutions': 1,
  536. 'threads': multiprocessing.cpu_count(),
  537. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  538. mge_options = {'init_type': 'MEDOID',
  539. 'random_inits': 10,
  540. 'time_limit': 600,
  541. 'verbose': 2,
  542. 'update_order': False,
  543. 'refine': False}
  544. save_results = True
  545. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  546. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  547. edge_required = False #
  548. # print settings.
  549. file_output = open(dir_save + 'output.txt', 'w')
  550. sys.stdout = file_output
  551. print('parameters:')
  552. print('dataset name:', ds_name)
  553. print('mpg_options:', mpg_options)
  554. print('kernel_options:', kernel_options)
  555. print('ged_options:', ged_options)
  556. print('mge_options:', mge_options)
  557. print('save_results:', save_results)
  558. print('irrelevant_labels:', irrelevant_labels)
  559. print()
  560. # generate preimages.
  561. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  562. print('\n-------------------------------------')
  563. print('fit method:', fit_method, '\n')
  564. mpg_options['fit_method'] = fit_method
  565. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  566. def xp_median_preimage_9_3():
  567. """xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  568. """
  569. from gklearn.utils.kernels import polynomialkernel
  570. # set parameters.
  571. ds_name = 'MAO' #
  572. mpg_options = {'fit_method': 'k-graphs',
  573. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  574. 'ds_name': ds_name,
  575. 'parallel': True, # False
  576. 'time_limit_in_sec': 0,
  577. 'max_itrs': 100, #
  578. 'max_itrs_without_update': 3,
  579. 'epsilon_residual': 0.01,
  580. 'epsilon_ec': 0.1,
  581. 'verbose': 2}
  582. pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
  583. kernel_options = {'name': 'Treelet', #
  584. 'sub_kernel': pkernel,
  585. 'parallel': 'imap_unordered',
  586. # 'parallel': None,
  587. 'n_jobs': multiprocessing.cpu_count(),
  588. 'normalize': True,
  589. 'verbose': 2}
  590. ged_options = {'method': 'IPFP',
  591. 'initialization_method': 'RANDOM', # 'NODE'
  592. 'initial_solutions': 10, # 1
  593. 'edit_cost': 'CONSTANT', #
  594. 'attr_distance': 'euclidean',
  595. 'ratio_runs_from_initial_solutions': 1,
  596. 'threads': multiprocessing.cpu_count(),
  597. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  598. mge_options = {'init_type': 'MEDOID',
  599. 'random_inits': 10,
  600. 'time_limit': 600,
  601. 'verbose': 2,
  602. 'update_order': False,
  603. 'refine': False}
  604. save_results = True
  605. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  606. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  607. edge_required = False #
  608. # print settings.
  609. file_output = open(dir_save + 'output.txt', 'w')
  610. sys.stdout = file_output
  611. print('parameters:')
  612. print('dataset name:', ds_name)
  613. print('mpg_options:', mpg_options)
  614. print('kernel_options:', kernel_options)
  615. print('ged_options:', ged_options)
  616. print('mge_options:', mge_options)
  617. print('save_results:', save_results)
  618. print('irrelevant_labels:', irrelevant_labels)
  619. print()
  620. # generate preimages.
  621. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  622. print('\n-------------------------------------')
  623. print('fit method:', fit_method, '\n')
  624. mpg_options['fit_method'] = fit_method
  625. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  626. def xp_median_preimage_9_4():
  627. """xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  628. """
  629. # set parameters.
  630. ds_name = 'MAO' #
  631. mpg_options = {'fit_method': 'k-graphs',
  632. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  633. 'ds_name': ds_name,
  634. 'parallel': True, # False
  635. 'time_limit_in_sec': 0,
  636. 'max_itrs': 100, #
  637. 'max_itrs_without_update': 3,
  638. 'epsilon_residual': 0.01,
  639. 'epsilon_ec': 0.1,
  640. 'verbose': 2}
  641. kernel_options = {'name': 'WeisfeilerLehman',
  642. 'height': 6,
  643. 'base_kernel': 'subtree',
  644. 'parallel': 'imap_unordered',
  645. # 'parallel': None,
  646. 'n_jobs': multiprocessing.cpu_count(),
  647. 'normalize': True,
  648. 'verbose': 2}
  649. ged_options = {'method': 'IPFP',
  650. 'initialization_method': 'RANDOM', # 'NODE'
  651. 'initial_solutions': 10, # 1
  652. 'edit_cost': 'CONSTANT', #
  653. 'attr_distance': 'euclidean',
  654. 'ratio_runs_from_initial_solutions': 1,
  655. 'threads': multiprocessing.cpu_count(),
  656. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  657. mge_options = {'init_type': 'MEDOID',
  658. 'random_inits': 10,
  659. 'time_limit': 600,
  660. 'verbose': 2,
  661. 'update_order': False,
  662. 'refine': False}
  663. save_results = True
  664. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  665. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  666. edge_required = False #
  667. # print settings.
  668. file_output = open(dir_save + 'output.txt', 'w')
  669. sys.stdout = file_output
  670. print('parameters:')
  671. print('dataset name:', ds_name)
  672. print('mpg_options:', mpg_options)
  673. print('kernel_options:', kernel_options)
  674. print('ged_options:', ged_options)
  675. print('mge_options:', mge_options)
  676. print('save_results:', save_results)
  677. print('irrelevant_labels:', irrelevant_labels)
  678. print()
  679. # # compute gram matrices for each class a priori.
  680. # print('Compute gram matrices for each class a priori.')
  681. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  682. # generate preimages.
  683. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  684. print('\n-------------------------------------')
  685. print('fit method:', fit_method, '\n')
  686. mpg_options['fit_method'] = fit_method
  687. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  688. def xp_median_preimage_8_1():
  689. """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  690. """
  691. # set parameters.
  692. ds_name = 'Monoterpenoides' #
  693. mpg_options = {'fit_method': 'k-graphs',
  694. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  695. 'ds_name': ds_name,
  696. 'parallel': True, # False
  697. 'time_limit_in_sec': 0,
  698. 'max_itrs': 100, #
  699. 'max_itrs_without_update': 3,
  700. 'epsilon_residual': 0.01,
  701. 'epsilon_ec': 0.1,
  702. 'verbose': 2}
  703. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  704. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  705. kernel_options = {'name': 'StructuralSP',
  706. 'edge_weight': None,
  707. 'node_kernels': sub_kernels,
  708. 'edge_kernels': sub_kernels,
  709. 'compute_method': 'naive',
  710. 'parallel': 'imap_unordered',
  711. # 'parallel': None,
  712. 'n_jobs': multiprocessing.cpu_count(),
  713. 'normalize': True,
  714. 'verbose': 2}
  715. ged_options = {'method': 'IPFP',
  716. 'initialization_method': 'RANDOM', # 'NODE'
  717. 'initial_solutions': 10, # 1
  718. 'edit_cost': 'CONSTANT', #
  719. 'attr_distance': 'euclidean',
  720. 'ratio_runs_from_initial_solutions': 1,
  721. 'threads': multiprocessing.cpu_count(),
  722. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  723. mge_options = {'init_type': 'MEDOID',
  724. 'random_inits': 10,
  725. 'time_limit': 600,
  726. 'verbose': 2,
  727. 'update_order': False,
  728. 'refine': False}
  729. save_results = True
  730. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  731. irrelevant_labels = None #
  732. edge_required = False #
  733. # print settings.
  734. file_output = open(dir_save + 'output.txt', 'w')
  735. sys.stdout = file_output
  736. print('parameters:')
  737. print('dataset name:', ds_name)
  738. print('mpg_options:', mpg_options)
  739. print('kernel_options:', kernel_options)
  740. print('ged_options:', ged_options)
  741. print('mge_options:', mge_options)
  742. print('save_results:', save_results)
  743. print('irrelevant_labels:', irrelevant_labels)
  744. print()
  745. # generate preimages.
  746. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  747. print('\n-------------------------------------')
  748. print('fit method:', fit_method, '\n')
  749. mpg_options['fit_method'] = fit_method
  750. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  751. def xp_median_preimage_8_2():
  752. """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  753. """
  754. # set parameters.
  755. ds_name = 'Monoterpenoides' #
  756. mpg_options = {'fit_method': 'k-graphs',
  757. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  758. 'ds_name': ds_name,
  759. 'parallel': True, # False
  760. 'time_limit_in_sec': 0,
  761. 'max_itrs': 100, #
  762. 'max_itrs_without_update': 3,
  763. 'epsilon_residual': 0.01,
  764. 'epsilon_ec': 0.1,
  765. 'verbose': 2}
  766. kernel_options = {'name': 'PathUpToH',
  767. 'depth': 7, #
  768. 'k_func': 'MinMax', #
  769. 'compute_method': 'trie',
  770. 'parallel': 'imap_unordered',
  771. # 'parallel': None,
  772. 'n_jobs': multiprocessing.cpu_count(),
  773. 'normalize': True,
  774. 'verbose': 2}
  775. ged_options = {'method': 'IPFP',
  776. 'initialization_method': 'RANDOM', # 'NODE'
  777. 'initial_solutions': 10, # 1
  778. 'edit_cost': 'CONSTANT', #
  779. 'attr_distance': 'euclidean',
  780. 'ratio_runs_from_initial_solutions': 1,
  781. 'threads': multiprocessing.cpu_count(),
  782. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  783. mge_options = {'init_type': 'MEDOID',
  784. 'random_inits': 10,
  785. 'time_limit': 600,
  786. 'verbose': 2,
  787. 'update_order': False,
  788. 'refine': False}
  789. save_results = True
  790. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  791. irrelevant_labels = None #
  792. edge_required = False #
  793. # print settings.
  794. file_output = open(dir_save + 'output.txt', 'w')
  795. sys.stdout = file_output
  796. print('parameters:')
  797. print('dataset name:', ds_name)
  798. print('mpg_options:', mpg_options)
  799. print('kernel_options:', kernel_options)
  800. print('ged_options:', ged_options)
  801. print('mge_options:', mge_options)
  802. print('save_results:', save_results)
  803. print('irrelevant_labels:', irrelevant_labels)
  804. print()
  805. # generate preimages.
  806. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  807. print('\n-------------------------------------')
  808. print('fit method:', fit_method, '\n')
  809. mpg_options['fit_method'] = fit_method
  810. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  811. def xp_median_preimage_8_3():
  812. """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  813. """
  814. from gklearn.utils.kernels import polynomialkernel
  815. # set parameters.
  816. ds_name = 'Monoterpenoides' #
  817. mpg_options = {'fit_method': 'k-graphs',
  818. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  819. 'ds_name': ds_name,
  820. 'parallel': True, # False
  821. 'time_limit_in_sec': 0,
  822. 'max_itrs': 100, #
  823. 'max_itrs_without_update': 3,
  824. 'epsilon_residual': 0.01,
  825. 'epsilon_ec': 0.1,
  826. 'verbose': 2}
  827. pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
  828. kernel_options = {'name': 'Treelet',
  829. 'sub_kernel': pkernel,
  830. 'parallel': 'imap_unordered',
  831. # 'parallel': None,
  832. 'n_jobs': multiprocessing.cpu_count(),
  833. 'normalize': True,
  834. 'verbose': 2}
  835. ged_options = {'method': 'IPFP',
  836. 'initialization_method': 'RANDOM', # 'NODE'
  837. 'initial_solutions': 10, # 1
  838. 'edit_cost': 'CONSTANT', #
  839. 'attr_distance': 'euclidean',
  840. 'ratio_runs_from_initial_solutions': 1,
  841. 'threads': multiprocessing.cpu_count(),
  842. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  843. mge_options = {'init_type': 'MEDOID',
  844. 'random_inits': 10,
  845. 'time_limit': 600,
  846. 'verbose': 2,
  847. 'update_order': False,
  848. 'refine': False}
  849. save_results = True
  850. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  851. irrelevant_labels = None #
  852. edge_required = False #
  853. # print settings.
  854. file_output = open(dir_save + 'output.txt', 'w')
  855. sys.stdout = file_output
  856. print('parameters:')
  857. print('dataset name:', ds_name)
  858. print('mpg_options:', mpg_options)
  859. print('kernel_options:', kernel_options)
  860. print('ged_options:', ged_options)
  861. print('mge_options:', mge_options)
  862. print('save_results:', save_results)
  863. print('irrelevant_labels:', irrelevant_labels)
  864. print()
  865. # generate preimages.
  866. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  867. print('\n-------------------------------------')
  868. print('fit method:', fit_method, '\n')
  869. mpg_options['fit_method'] = fit_method
  870. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  871. def xp_median_preimage_8_4():
  872. """xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  873. """
  874. # set parameters.
  875. ds_name = 'Monoterpenoides' #
  876. mpg_options = {'fit_method': 'k-graphs',
  877. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  878. 'ds_name': ds_name,
  879. 'parallel': True, # False
  880. 'time_limit_in_sec': 0,
  881. 'max_itrs': 100, #
  882. 'max_itrs_without_update': 3,
  883. 'epsilon_residual': 0.01,
  884. 'epsilon_ec': 0.1,
  885. 'verbose': 2}
  886. kernel_options = {'name': 'WeisfeilerLehman',
  887. 'height': 4,
  888. 'base_kernel': 'subtree',
  889. 'parallel': 'imap_unordered',
  890. # 'parallel': None,
  891. 'n_jobs': multiprocessing.cpu_count(),
  892. 'normalize': True,
  893. 'verbose': 2}
  894. ged_options = {'method': 'IPFP',
  895. 'initialization_method': 'RANDOM', # 'NODE'
  896. 'initial_solutions': 10, # 1
  897. 'edit_cost': 'CONSTANT', #
  898. 'attr_distance': 'euclidean',
  899. 'ratio_runs_from_initial_solutions': 1,
  900. 'threads': multiprocessing.cpu_count(),
  901. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  902. mge_options = {'init_type': 'MEDOID',
  903. 'random_inits': 10,
  904. 'time_limit': 600,
  905. 'verbose': 2,
  906. 'update_order': False,
  907. 'refine': False}
  908. save_results = True
  909. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  910. irrelevant_labels = None #
  911. edge_required = False #
  912. # print settings.
  913. file_output = open(dir_save + 'output.txt', 'w')
  914. sys.stdout = file_output
  915. print('parameters:')
  916. print('dataset name:', ds_name)
  917. print('mpg_options:', mpg_options)
  918. print('kernel_options:', kernel_options)
  919. print('ged_options:', ged_options)
  920. print('mge_options:', mge_options)
  921. print('save_results:', save_results)
  922. print('irrelevant_labels:', irrelevant_labels)
  923. print()
  924. # generate preimages.
  925. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  926. print('\n-------------------------------------')
  927. print('fit method:', fit_method, '\n')
  928. mpg_options['fit_method'] = fit_method
  929. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  930. def xp_median_preimage_7_1():
  931. """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  932. """
  933. # set parameters.
  934. ds_name = 'MUTAG' #
  935. mpg_options = {'fit_method': 'k-graphs',
  936. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  937. 'ds_name': ds_name,
  938. 'parallel': True, # False
  939. 'time_limit_in_sec': 0,
  940. 'max_itrs': 100, #
  941. 'max_itrs_without_update': 3,
  942. 'epsilon_residual': 0.01,
  943. 'epsilon_ec': 0.1,
  944. 'verbose': 2}
  945. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  946. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  947. kernel_options = {'name': 'StructuralSP',
  948. 'edge_weight': None,
  949. 'node_kernels': sub_kernels,
  950. 'edge_kernels': sub_kernels,
  951. 'compute_method': 'naive',
  952. 'parallel': 'imap_unordered',
  953. # 'parallel': None,
  954. 'n_jobs': multiprocessing.cpu_count(),
  955. 'normalize': True,
  956. 'verbose': 2}
  957. ged_options = {'method': 'IPFP',
  958. 'initialization_method': 'RANDOM', # 'NODE'
  959. 'initial_solutions': 10, # 1
  960. 'edit_cost': 'CONSTANT', #
  961. 'attr_distance': 'euclidean',
  962. 'ratio_runs_from_initial_solutions': 1,
  963. 'threads': multiprocessing.cpu_count(),
  964. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  965. mge_options = {'init_type': 'MEDOID',
  966. 'random_inits': 10,
  967. 'time_limit': 600,
  968. 'verbose': 2,
  969. 'update_order': False,
  970. 'refine': False}
  971. save_results = True
  972. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  973. irrelevant_labels = None #
  974. edge_required = False #
  975. # print settings.
  976. file_output = open(dir_save + 'output.txt', 'w')
  977. sys.stdout = file_output
  978. print('parameters:')
  979. print('dataset name:', ds_name)
  980. print('mpg_options:', mpg_options)
  981. print('kernel_options:', kernel_options)
  982. print('ged_options:', ged_options)
  983. print('mge_options:', mge_options)
  984. print('save_results:', save_results)
  985. print('irrelevant_labels:', irrelevant_labels)
  986. print()
  987. # generate preimages.
  988. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  989. print('\n-------------------------------------')
  990. print('fit method:', fit_method, '\n')
  991. mpg_options['fit_method'] = fit_method
  992. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  993. def xp_median_preimage_7_2():
  994. """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  995. """
  996. # set parameters.
  997. ds_name = 'MUTAG' #
  998. mpg_options = {'fit_method': 'k-graphs',
  999. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1000. 'ds_name': ds_name,
  1001. 'parallel': True, # False
  1002. 'time_limit_in_sec': 0,
  1003. 'max_itrs': 100, #
  1004. 'max_itrs_without_update': 3,
  1005. 'epsilon_residual': 0.01,
  1006. 'epsilon_ec': 0.1,
  1007. 'verbose': 2}
  1008. kernel_options = {'name': 'PathUpToH',
  1009. 'depth': 2, #
  1010. 'k_func': 'MinMax', #
  1011. 'compute_method': 'trie',
  1012. 'parallel': 'imap_unordered',
  1013. # 'parallel': None,
  1014. 'n_jobs': multiprocessing.cpu_count(),
  1015. 'normalize': True,
  1016. 'verbose': 2}
  1017. ged_options = {'method': 'IPFP',
  1018. 'initialization_method': 'RANDOM', # 'NODE'
  1019. 'initial_solutions': 10, # 1
  1020. 'edit_cost': 'CONSTANT', #
  1021. 'attr_distance': 'euclidean',
  1022. 'ratio_runs_from_initial_solutions': 1,
  1023. 'threads': multiprocessing.cpu_count(),
  1024. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1025. mge_options = {'init_type': 'MEDOID',
  1026. 'random_inits': 10,
  1027. 'time_limit': 600,
  1028. 'verbose': 2,
  1029. 'update_order': False,
  1030. 'refine': False}
  1031. save_results = True
  1032. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1033. irrelevant_labels = None #
  1034. edge_required = False #
  1035. # print settings.
  1036. file_output = open(dir_save + 'output.txt', 'w')
  1037. sys.stdout = file_output
  1038. print('parameters:')
  1039. print('dataset name:', ds_name)
  1040. print('mpg_options:', mpg_options)
  1041. print('kernel_options:', kernel_options)
  1042. print('ged_options:', ged_options)
  1043. print('mge_options:', mge_options)
  1044. print('save_results:', save_results)
  1045. print('irrelevant_labels:', irrelevant_labels)
  1046. print()
  1047. # generate preimages.
  1048. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1049. print('\n-------------------------------------')
  1050. print('fit method:', fit_method, '\n')
  1051. mpg_options['fit_method'] = fit_method
  1052. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1053. def xp_median_preimage_7_3():
  1054. """xp 7_3: MUTAG, Treelet, using CONSTANT.
  1055. """
  1056. from gklearn.utils.kernels import polynomialkernel
  1057. # set parameters.
  1058. ds_name = 'MUTAG' #
  1059. mpg_options = {'fit_method': 'k-graphs',
  1060. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1061. 'ds_name': ds_name,
  1062. 'parallel': True, # False
  1063. 'time_limit_in_sec': 0,
  1064. 'max_itrs': 100, #
  1065. 'max_itrs_without_update': 3,
  1066. 'epsilon_residual': 0.01,
  1067. 'epsilon_ec': 0.1,
  1068. 'verbose': 2}
  1069. pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
  1070. kernel_options = {'name': 'Treelet',
  1071. 'sub_kernel': pkernel,
  1072. 'parallel': 'imap_unordered',
  1073. # 'parallel': None,
  1074. 'n_jobs': multiprocessing.cpu_count(),
  1075. 'normalize': True,
  1076. 'verbose': 2}
  1077. ged_options = {'method': 'IPFP',
  1078. 'initialization_method': 'RANDOM', # 'NODE'
  1079. 'initial_solutions': 10, # 1
  1080. 'edit_cost': 'CONSTANT', #
  1081. 'attr_distance': 'euclidean',
  1082. 'ratio_runs_from_initial_solutions': 1,
  1083. 'threads': multiprocessing.cpu_count(),
  1084. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1085. mge_options = {'init_type': 'MEDOID',
  1086. 'random_inits': 10,
  1087. 'time_limit': 600,
  1088. 'verbose': 2,
  1089. 'update_order': False,
  1090. 'refine': False}
  1091. save_results = True
  1092. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1093. irrelevant_labels = None #
  1094. edge_required = False #
  1095. # print settings.
  1096. file_output = open(dir_save + 'output.txt', 'w')
  1097. sys.stdout = file_output
  1098. print('parameters:')
  1099. print('dataset name:', ds_name)
  1100. print('mpg_options:', mpg_options)
  1101. print('kernel_options:', kernel_options)
  1102. print('ged_options:', ged_options)
  1103. print('mge_options:', mge_options)
  1104. print('save_results:', save_results)
  1105. print('irrelevant_labels:', irrelevant_labels)
  1106. print()
  1107. # generate preimages.
  1108. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1109. print('\n-------------------------------------')
  1110. print('fit method:', fit_method, '\n')
  1111. mpg_options['fit_method'] = fit_method
  1112. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1113. def xp_median_preimage_7_4():
  1114. """xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1115. """
  1116. # set parameters.
  1117. ds_name = 'MUTAG' #
  1118. mpg_options = {'fit_method': 'k-graphs',
  1119. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1120. 'ds_name': ds_name,
  1121. 'parallel': True, # False
  1122. 'time_limit_in_sec': 0,
  1123. 'max_itrs': 100, #
  1124. 'max_itrs_without_update': 3,
  1125. 'epsilon_residual': 0.01,
  1126. 'epsilon_ec': 0.1,
  1127. 'verbose': 2}
  1128. kernel_options = {'name': 'WeisfeilerLehman',
  1129. 'height': 1,
  1130. 'base_kernel': 'subtree',
  1131. 'parallel': 'imap_unordered',
  1132. # 'parallel': None,
  1133. 'n_jobs': multiprocessing.cpu_count(),
  1134. 'normalize': True,
  1135. 'verbose': 2}
  1136. ged_options = {'method': 'IPFP',
  1137. 'initialization_method': 'RANDOM', # 'NODE'
  1138. 'initial_solutions': 10, # 1
  1139. 'edit_cost': 'CONSTANT', #
  1140. 'attr_distance': 'euclidean',
  1141. 'ratio_runs_from_initial_solutions': 1,
  1142. 'threads': multiprocessing.cpu_count(),
  1143. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1144. mge_options = {'init_type': 'MEDOID',
  1145. 'random_inits': 10,
  1146. 'time_limit': 600,
  1147. 'verbose': 2,
  1148. 'update_order': False,
  1149. 'refine': False}
  1150. save_results = True
  1151. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1152. irrelevant_labels = None #
  1153. edge_required = False #
  1154. # print settings.
  1155. file_output = open(dir_save + 'output.txt', 'w')
  1156. sys.stdout = file_output
  1157. print('parameters:')
  1158. print('dataset name:', ds_name)
  1159. print('mpg_options:', mpg_options)
  1160. print('kernel_options:', kernel_options)
  1161. print('ged_options:', ged_options)
  1162. print('mge_options:', mge_options)
  1163. print('save_results:', save_results)
  1164. print('irrelevant_labels:', irrelevant_labels)
  1165. print()
  1166. # generate preimages.
  1167. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1168. print('\n-------------------------------------')
  1169. print('fit method:', fit_method, '\n')
  1170. mpg_options['fit_method'] = fit_method
  1171. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1172. def xp_median_preimage_6_1():
  1173. """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1174. """
  1175. # set parameters.
  1176. ds_name = 'COIL-RAG' #
  1177. mpg_options = {'fit_method': 'k-graphs',
  1178. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1179. 'ds_name': ds_name,
  1180. 'parallel': True, # False
  1181. 'time_limit_in_sec': 0,
  1182. 'max_itrs': 100,
  1183. 'max_itrs_without_update': 3,
  1184. 'epsilon_residual': 0.01,
  1185. 'epsilon_ec': 0.1,
  1186. 'verbose': 2}
  1187. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1188. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1189. kernel_options = {'name': 'StructuralSP',
  1190. 'edge_weight': None,
  1191. 'node_kernels': sub_kernels,
  1192. 'edge_kernels': sub_kernels,
  1193. 'compute_method': 'naive',
  1194. 'parallel': 'imap_unordered',
  1195. # 'parallel': None,
  1196. 'n_jobs': multiprocessing.cpu_count(),
  1197. 'normalize': True,
  1198. 'verbose': 2}
  1199. ged_options = {'method': 'IPFP',
  1200. 'initialization_method': 'RANDOM', # 'NODE'
  1201. 'initial_solutions': 10, # 1
  1202. 'edit_cost': 'NON_SYMBOLIC', #
  1203. 'attr_distance': 'euclidean',
  1204. 'ratio_runs_from_initial_solutions': 1,
  1205. 'threads': multiprocessing.cpu_count(),
  1206. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1207. mge_options = {'init_type': 'MEDOID',
  1208. 'random_inits': 10,
  1209. 'time_limit': 600,
  1210. 'verbose': 2,
  1211. 'update_order': False,
  1212. 'refine': False}
  1213. save_results = True
  1214. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1215. irrelevant_labels = None #
  1216. edge_required = False #
  1217. # print settings.
  1218. file_output = open(dir_save + 'output.txt', 'w')
  1219. sys.stdout = file_output
  1220. print('parameters:')
  1221. print('dataset name:', ds_name)
  1222. print('mpg_options:', mpg_options)
  1223. print('kernel_options:', kernel_options)
  1224. print('ged_options:', ged_options)
  1225. print('mge_options:', mge_options)
  1226. print('save_results:', save_results)
  1227. print('irrelevant_labels:', irrelevant_labels)
  1228. print()
  1229. # generate preimages.
  1230. for fit_method in ['k-graphs'] + ['random'] * 5:
  1231. print('\n-------------------------------------')
  1232. print('fit method:', fit_method, '\n')
  1233. mpg_options['fit_method'] = fit_method
  1234. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1235. def xp_median_preimage_6_2():
  1236. """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1237. """
  1238. # set parameters.
  1239. ds_name = 'COIL-RAG' #
  1240. mpg_options = {'fit_method': 'k-graphs',
  1241. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1242. 'ds_name': ds_name,
  1243. 'parallel': True, # False
  1244. 'time_limit_in_sec': 0,
  1245. 'max_itrs': 100,
  1246. 'max_itrs_without_update': 3,
  1247. 'epsilon_residual': 0.01,
  1248. 'epsilon_ec': 0.1,
  1249. 'verbose': 2}
  1250. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1251. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1252. kernel_options = {'name': 'ShortestPath',
  1253. 'edge_weight': None,
  1254. 'node_kernels': sub_kernels,
  1255. 'parallel': 'imap_unordered',
  1256. # 'parallel': None,
  1257. 'n_jobs': multiprocessing.cpu_count(),
  1258. 'normalize': True,
  1259. 'verbose': 2}
  1260. ged_options = {'method': 'IPFP',
  1261. 'initialization_method': 'RANDOM', # 'NODE'
  1262. 'initial_solutions': 10, # 1
  1263. 'edit_cost': 'NON_SYMBOLIC', #
  1264. 'attr_distance': 'euclidean',
  1265. 'ratio_runs_from_initial_solutions': 1,
  1266. 'threads': multiprocessing.cpu_count(),
  1267. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1268. mge_options = {'init_type': 'MEDOID',
  1269. 'random_inits': 10,
  1270. 'time_limit': 600,
  1271. 'verbose': 2,
  1272. 'update_order': False,
  1273. 'refine': False}
  1274. save_results = True
  1275. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1276. irrelevant_labels = None #
  1277. edge_required = True #
  1278. # print settings.
  1279. file_output = open(dir_save + 'output.txt', 'w')
  1280. sys.stdout = file_output
  1281. print('parameters:')
  1282. print('dataset name:', ds_name)
  1283. print('mpg_options:', mpg_options)
  1284. print('kernel_options:', kernel_options)
  1285. print('ged_options:', ged_options)
  1286. print('mge_options:', mge_options)
  1287. print('save_results:', save_results)
  1288. print('irrelevant_labels:', irrelevant_labels)
  1289. print()
  1290. # generate preimages.
  1291. for fit_method in ['k-graphs'] + ['random'] * 5:
  1292. print('\n-------------------------------------')
  1293. print('fit method:', fit_method, '\n')
  1294. mpg_options['fit_method'] = fit_method
  1295. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1296. def xp_median_preimage_5_1():
  1297. """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1298. """
  1299. # set parameters.
  1300. ds_name = 'FRANKENSTEIN' #
  1301. mpg_options = {'fit_method': 'k-graphs',
  1302. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1303. 'ds_name': ds_name,
  1304. 'parallel': True, # False
  1305. 'time_limit_in_sec': 0,
  1306. 'max_itrs': 100,
  1307. 'max_itrs_without_update': 3,
  1308. 'epsilon_residual': 0.01,
  1309. 'epsilon_ec': 0.1,
  1310. 'verbose': 2}
  1311. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1312. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1313. kernel_options = {'name': 'StructuralSP',
  1314. 'edge_weight': None,
  1315. 'node_kernels': sub_kernels,
  1316. 'edge_kernels': sub_kernels,
  1317. 'compute_method': 'naive',
  1318. 'parallel': 'imap_unordered',
  1319. # 'parallel': None,
  1320. 'n_jobs': multiprocessing.cpu_count(),
  1321. 'normalize': True,
  1322. 'verbose': 2}
  1323. ged_options = {'method': 'IPFP',
  1324. 'initialization_method': 'RANDOM', # 'NODE'
  1325. 'initial_solutions': 10, # 1
  1326. 'edit_cost': 'NON_SYMBOLIC',
  1327. 'attr_distance': 'euclidean',
  1328. 'ratio_runs_from_initial_solutions': 1,
  1329. 'threads': multiprocessing.cpu_count(),
  1330. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1331. mge_options = {'init_type': 'MEDOID',
  1332. 'random_inits': 10,
  1333. 'time_limit': 600,
  1334. 'verbose': 2,
  1335. 'update_order': False,
  1336. 'refine': False}
  1337. save_results = True
  1338. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1339. irrelevant_labels = None #
  1340. edge_required = False #
  1341. # print settings.
  1342. file_output = open(dir_save + 'output.txt', 'w')
  1343. sys.stdout = file_output
  1344. print('parameters:')
  1345. print('dataset name:', ds_name)
  1346. print('mpg_options:', mpg_options)
  1347. print('kernel_options:', kernel_options)
  1348. print('ged_options:', ged_options)
  1349. print('mge_options:', mge_options)
  1350. print('save_results:', save_results)
  1351. print('irrelevant_labels:', irrelevant_labels)
  1352. print()
  1353. # generate preimages.
  1354. for fit_method in ['k-graphs'] + ['random'] * 5:
  1355. print('\n-------------------------------------')
  1356. print('fit method:', fit_method, '\n')
  1357. mpg_options['fit_method'] = fit_method
  1358. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1359. def xp_median_preimage_4_1():
  1360. """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1361. """
  1362. # set parameters.
  1363. ds_name = 'COLORS-3' #
  1364. mpg_options = {'fit_method': 'k-graphs',
  1365. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1366. 'ds_name': ds_name,
  1367. 'parallel': True, # False
  1368. 'time_limit_in_sec': 0,
  1369. 'max_itrs': 100,
  1370. 'max_itrs_without_update': 3,
  1371. 'epsilon_residual': 0.01,
  1372. 'epsilon_ec': 0.1,
  1373. 'verbose': 2}
  1374. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1375. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1376. kernel_options = {'name': 'StructuralSP',
  1377. 'edge_weight': None,
  1378. 'node_kernels': sub_kernels,
  1379. 'edge_kernels': sub_kernels,
  1380. 'compute_method': 'naive',
  1381. 'parallel': 'imap_unordered',
  1382. # 'parallel': None,
  1383. 'n_jobs': multiprocessing.cpu_count(),
  1384. 'normalize': True,
  1385. 'verbose': 2}
  1386. ged_options = {'method': 'IPFP',
  1387. 'initialization_method': 'RANDOM', # 'NODE'
  1388. 'initial_solutions': 10, # 1
  1389. 'edit_cost': 'NON_SYMBOLIC',
  1390. 'attr_distance': 'euclidean',
  1391. 'ratio_runs_from_initial_solutions': 1,
  1392. 'threads': multiprocessing.cpu_count(),
  1393. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1394. mge_options = {'init_type': 'MEDOID',
  1395. 'random_inits': 10,
  1396. 'time_limit': 600,
  1397. 'verbose': 2,
  1398. 'update_order': False,
  1399. 'refine': False}
  1400. save_results = True
  1401. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1402. irrelevant_labels = None #
  1403. edge_required = False #
  1404. # print settings.
  1405. file_output = open(dir_save + 'output.txt', 'w')
  1406. sys.stdout = file_output
  1407. print('parameters:')
  1408. print('dataset name:', ds_name)
  1409. print('mpg_options:', mpg_options)
  1410. print('kernel_options:', kernel_options)
  1411. print('ged_options:', ged_options)
  1412. print('mge_options:', mge_options)
  1413. print('save_results:', save_results)
  1414. print('irrelevant_labels:', irrelevant_labels)
  1415. print()
  1416. # generate preimages.
  1417. for fit_method in ['k-graphs'] + ['random'] * 5:
  1418. print('\n-------------------------------------')
  1419. print('fit method:', fit_method, '\n')
  1420. mpg_options['fit_method'] = fit_method
  1421. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1422. def xp_median_preimage_3_2():
  1423. """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1424. """
  1425. # set parameters.
  1426. ds_name = 'Fingerprint' #
  1427. mpg_options = {'fit_method': 'k-graphs',
  1428. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  1429. 'ds_name': ds_name,
  1430. 'parallel': True, # False
  1431. 'time_limit_in_sec': 0,
  1432. 'max_itrs': 100,
  1433. 'max_itrs_without_update': 3,
  1434. 'epsilon_residual': 0.01,
  1435. 'epsilon_ec': 0.1,
  1436. 'verbose': 2}
  1437. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1438. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1439. kernel_options = {'name': 'ShortestPath',
  1440. 'edge_weight': None,
  1441. 'node_kernels': sub_kernels,
  1442. 'parallel': 'imap_unordered',
  1443. # 'parallel': None,
  1444. 'n_jobs': multiprocessing.cpu_count(),
  1445. 'normalize': True,
  1446. 'verbose': 2}
  1447. ged_options = {'method': 'IPFP',
  1448. 'initialization_method': 'RANDOM', # 'NODE'
  1449. 'initial_solutions': 10, # 1
  1450. 'edit_cost': 'LETTER2',
  1451. 'attr_distance': 'euclidean',
  1452. 'ratio_runs_from_initial_solutions': 1,
  1453. 'threads': multiprocessing.cpu_count(),
  1454. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1455. mge_options = {'init_type': 'MEDOID',
  1456. 'random_inits': 10,
  1457. 'time_limit': 600,
  1458. 'verbose': 2,
  1459. 'update_order': False,
  1460. 'refine': False}
  1461. save_results = True
  1462. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1463. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1464. edge_required = True #
  1465. # print settings.
  1466. file_output = open(dir_save + 'output.txt', 'w')
  1467. sys.stdout = file_output
  1468. print('parameters:')
  1469. print('dataset name:', ds_name)
  1470. print('mpg_options:', mpg_options)
  1471. print('kernel_options:', kernel_options)
  1472. print('ged_options:', ged_options)
  1473. print('mge_options:', mge_options)
  1474. print('save_results:', save_results)
  1475. print('irrelevant_labels:', irrelevant_labels)
  1476. print()
  1477. # generate preimages.
  1478. for fit_method in ['k-graphs'] + ['random'] * 5:
  1479. print('\n-------------------------------------')
  1480. print('fit method:', fit_method, '\n')
  1481. mpg_options['fit_method'] = fit_method
  1482. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1483. def xp_median_preimage_3_1():
  1484. """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1485. """
  1486. # set parameters.
  1487. ds_name = 'Fingerprint' #
  1488. mpg_options = {'fit_method': 'k-graphs',
  1489. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  1490. 'ds_name': ds_name,
  1491. 'parallel': True, # False
  1492. 'time_limit_in_sec': 0,
  1493. 'max_itrs': 100,
  1494. 'max_itrs_without_update': 3,
  1495. 'epsilon_residual': 0.01,
  1496. 'epsilon_ec': 0.1,
  1497. 'verbose': 2}
  1498. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1499. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1500. kernel_options = {'name': 'StructuralSP',
  1501. 'edge_weight': None,
  1502. 'node_kernels': sub_kernels,
  1503. 'edge_kernels': sub_kernels,
  1504. 'compute_method': 'naive',
  1505. 'parallel': 'imap_unordered',
  1506. # 'parallel': None,
  1507. 'n_jobs': multiprocessing.cpu_count(),
  1508. 'normalize': True,
  1509. 'verbose': 2}
  1510. ged_options = {'method': 'IPFP',
  1511. 'initialization_method': 'RANDOM', # 'NODE'
  1512. 'initial_solutions': 10, # 1
  1513. 'edit_cost': 'LETTER2',
  1514. 'attr_distance': 'euclidean',
  1515. 'ratio_runs_from_initial_solutions': 1,
  1516. 'threads': multiprocessing.cpu_count(),
  1517. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1518. mge_options = {'init_type': 'MEDOID',
  1519. 'random_inits': 10,
  1520. 'time_limit': 600,
  1521. 'verbose': 2,
  1522. 'update_order': False,
  1523. 'refine': False}
  1524. save_results = True
  1525. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1526. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1527. edge_required = False #
  1528. # print settings.
  1529. file_output = open(dir_save + 'output.txt', 'w')
  1530. sys.stdout = file_output
  1531. print('parameters:')
  1532. print('dataset name:', ds_name)
  1533. print('mpg_options:', mpg_options)
  1534. print('kernel_options:', kernel_options)
  1535. print('ged_options:', ged_options)
  1536. print('mge_options:', mge_options)
  1537. print('save_results:', save_results)
  1538. print('irrelevant_labels:', irrelevant_labels)
  1539. print()
  1540. # generate preimages.
  1541. for fit_method in ['k-graphs'] + ['random'] * 5:
  1542. print('\n-------------------------------------')
  1543. print('fit method:', fit_method, '\n')
  1544. mpg_options['fit_method'] = fit_method
  1545. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1546. def xp_median_preimage_2_1():
  1547. """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1548. """
  1549. # set parameters.
  1550. ds_name = 'COIL-DEL' #
  1551. mpg_options = {'fit_method': 'k-graphs',
  1552. 'init_ecc': [3, 3, 1, 3, 3],
  1553. 'ds_name': ds_name,
  1554. 'parallel': True, # False
  1555. 'time_limit_in_sec': 0,
  1556. 'max_itrs': 100,
  1557. 'max_itrs_without_update': 3,
  1558. 'epsilon_residual': 0.01,
  1559. 'epsilon_ec': 0.1,
  1560. 'verbose': 2}
  1561. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1562. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1563. kernel_options = {'name': 'StructuralSP',
  1564. 'edge_weight': None,
  1565. 'node_kernels': sub_kernels,
  1566. 'edge_kernels': sub_kernels,
  1567. 'compute_method': 'naive',
  1568. 'parallel': 'imap_unordered',
  1569. # 'parallel': None,
  1570. 'n_jobs': multiprocessing.cpu_count(),
  1571. 'normalize': True,
  1572. 'verbose': 2}
  1573. ged_options = {'method': 'IPFP',
  1574. 'initialization_method': 'RANDOM', # 'NODE'
  1575. 'initial_solutions': 10, # 1
  1576. 'edit_cost': 'LETTER2',
  1577. 'attr_distance': 'euclidean',
  1578. 'ratio_runs_from_initial_solutions': 1,
  1579. 'threads': multiprocessing.cpu_count(),
  1580. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1581. mge_options = {'init_type': 'MEDOID',
  1582. 'random_inits': 10,
  1583. 'time_limit': 600,
  1584. 'verbose': 2,
  1585. 'update_order': False,
  1586. 'refine': False}
  1587. save_results = True
  1588. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.node_attrs/'
  1589. irrelevant_labels = {'edge_labels': ['valence']}
  1590. # print settings.
  1591. file_output = open(dir_save + 'output.txt', 'w')
  1592. sys.stdout = file_output
  1593. print('parameters:')
  1594. print('dataset name:', ds_name)
  1595. print('mpg_options:', mpg_options)
  1596. print('kernel_options:', kernel_options)
  1597. print('ged_options:', ged_options)
  1598. print('mge_options:', mge_options)
  1599. print('save_results:', save_results)
  1600. print('irrelevant_labels:', irrelevant_labels)
  1601. print()
  1602. # # compute gram matrices for each class a priori.
  1603. # print('Compute gram matrices for each class a priori.')
  1604. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1605. # generate preimages.
  1606. for fit_method in ['k-graphs'] + ['random'] * 5:
  1607. print('\n-------------------------------------')
  1608. print('fit method:', fit_method, '\n')
  1609. mpg_options['fit_method'] = fit_method
  1610. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1611. def xp_median_preimage_1_1():
  1612. """xp 1_1: Letter-high, StructuralSP.
  1613. """
  1614. # set parameters.
  1615. ds_name = 'Letter-high'
  1616. mpg_options = {'fit_method': 'k-graphs',
  1617. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1618. 'ds_name': ds_name,
  1619. 'parallel': True, # False
  1620. 'time_limit_in_sec': 0,
  1621. 'max_itrs': 100,
  1622. 'max_itrs_without_update': 3,
  1623. 'epsilon_residual': 0.01,
  1624. 'epsilon_ec': 0.1,
  1625. 'verbose': 2}
  1626. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1627. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1628. kernel_options = {'name': 'StructuralSP',
  1629. 'edge_weight': None,
  1630. 'node_kernels': sub_kernels,
  1631. 'edge_kernels': sub_kernels,
  1632. 'compute_method': 'naive',
  1633. 'parallel': 'imap_unordered',
  1634. # 'parallel': None,
  1635. 'n_jobs': multiprocessing.cpu_count(),
  1636. 'normalize': True,
  1637. 'verbose': 2}
  1638. ged_options = {'method': 'IPFP',
  1639. 'initialization_method': 'RANDOM', # 'NODE'
  1640. 'initial_solutions': 10, # 1
  1641. 'edit_cost': 'LETTER2',
  1642. 'attr_distance': 'euclidean',
  1643. 'ratio_runs_from_initial_solutions': 1,
  1644. 'threads': multiprocessing.cpu_count(),
  1645. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1646. mge_options = {'init_type': 'MEDOID',
  1647. 'random_inits': 10,
  1648. 'time_limit': 600,
  1649. 'verbose': 2,
  1650. 'update_order': False,
  1651. 'refine': False}
  1652. save_results = True
  1653. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1654. # print settings.
  1655. file_output = open(dir_save + 'output.txt', 'w')
  1656. sys.stdout = file_output
  1657. print('parameters:')
  1658. print('dataset name:', ds_name)
  1659. print('mpg_options:', mpg_options)
  1660. print('kernel_options:', kernel_options)
  1661. print('ged_options:', ged_options)
  1662. print('mge_options:', mge_options)
  1663. print('save_results:', save_results)
  1664. # generate preimages.
  1665. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1666. print('\n-------------------------------------')
  1667. print('fit method:', fit_method, '\n')
  1668. mpg_options['fit_method'] = fit_method
  1669. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1670. def xp_median_preimage_1_2():
  1671. """xp 1_2: Letter-high, ShortestPath.
  1672. """
  1673. # set parameters.
  1674. ds_name = 'Letter-high'
  1675. mpg_options = {'fit_method': 'k-graphs',
  1676. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1677. 'ds_name': ds_name,
  1678. 'parallel': True, # False
  1679. 'time_limit_in_sec': 0,
  1680. 'max_itrs': 100,
  1681. 'max_itrs_without_update': 3,
  1682. 'epsilon_residual': 0.01,
  1683. 'epsilon_ec': 0.1,
  1684. 'verbose': 2}
  1685. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1686. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1687. kernel_options = {'name': 'ShortestPath',
  1688. 'edge_weight': None,
  1689. 'node_kernels': sub_kernels,
  1690. 'parallel': 'imap_unordered',
  1691. # 'parallel': None,
  1692. 'n_jobs': multiprocessing.cpu_count(),
  1693. 'normalize': True,
  1694. 'verbose': 2}
  1695. ged_options = {'method': 'IPFP',
  1696. 'initialization_method': 'RANDOM', # 'NODE'
  1697. 'initial_solutions': 10, # 1
  1698. 'edit_cost': 'LETTER2',
  1699. 'attr_distance': 'euclidean',
  1700. 'ratio_runs_from_initial_solutions': 1,
  1701. 'threads': multiprocessing.cpu_count(),
  1702. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1703. mge_options = {'init_type': 'MEDOID',
  1704. 'random_inits': 10,
  1705. 'time_limit': 600,
  1706. 'verbose': 2,
  1707. 'update_order': False,
  1708. 'refine': False}
  1709. save_results = True
  1710. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1711. irrelevant_labels = None #
  1712. edge_required = True #
  1713. # print settings.
  1714. file_output = open(dir_save + 'output.txt', 'w')
  1715. sys.stdout = file_output
  1716. print('parameters:')
  1717. print('dataset name:', ds_name)
  1718. print('mpg_options:', mpg_options)
  1719. print('kernel_options:', kernel_options)
  1720. print('ged_options:', ged_options)
  1721. print('mge_options:', mge_options)
  1722. print('save_results:', save_results)
  1723. print('irrelevant_labels:', irrelevant_labels)
  1724. print()
  1725. # generate preimages.
  1726. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1727. print('\n-------------------------------------')
  1728. print('fit method:', fit_method, '\n')
  1729. mpg_options['fit_method'] = fit_method
  1730. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1731. def xp_median_preimage_10_1():
  1732. """xp 10_1: Letter-med, StructuralSP.
  1733. """
  1734. # set parameters.
  1735. ds_name = 'Letter-med'
  1736. mpg_options = {'fit_method': 'k-graphs',
  1737. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1738. 'ds_name': ds_name,
  1739. 'parallel': True, # False
  1740. 'time_limit_in_sec': 0,
  1741. 'max_itrs': 100,
  1742. 'max_itrs_without_update': 3,
  1743. 'epsilon_residual': 0.01,
  1744. 'epsilon_ec': 0.1,
  1745. 'verbose': 2}
  1746. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1747. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1748. kernel_options = {'name': 'StructuralSP',
  1749. 'edge_weight': None,
  1750. 'node_kernels': sub_kernels,
  1751. 'edge_kernels': sub_kernels,
  1752. 'compute_method': 'naive',
  1753. 'parallel': 'imap_unordered',
  1754. # 'parallel': None,
  1755. 'n_jobs': multiprocessing.cpu_count(),
  1756. 'normalize': True,
  1757. 'verbose': 2}
  1758. ged_options = {'method': 'IPFP',
  1759. 'initialization_method': 'RANDOM', # 'NODE'
  1760. 'initial_solutions': 10, # 1
  1761. 'edit_cost': 'LETTER2',
  1762. 'attr_distance': 'euclidean',
  1763. 'ratio_runs_from_initial_solutions': 1,
  1764. 'threads': multiprocessing.cpu_count(),
  1765. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1766. mge_options = {'init_type': 'MEDOID',
  1767. 'random_inits': 10,
  1768. 'time_limit': 600,
  1769. 'verbose': 2,
  1770. 'update_order': False,
  1771. 'refine': False}
  1772. save_results = True
  1773. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1774. # print settings.
  1775. file_output = open(dir_save + 'output.txt', 'w')
  1776. sys.stdout = file_output
  1777. print('parameters:')
  1778. print('dataset name:', ds_name)
  1779. print('mpg_options:', mpg_options)
  1780. print('kernel_options:', kernel_options)
  1781. print('ged_options:', ged_options)
  1782. print('mge_options:', mge_options)
  1783. print('save_results:', save_results)
  1784. # generate preimages.
  1785. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1786. print('\n-------------------------------------')
  1787. print('fit method:', fit_method, '\n')
  1788. mpg_options['fit_method'] = fit_method
  1789. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1790. def xp_median_preimage_10_2():
  1791. """xp 10_2: Letter-med, ShortestPath.
  1792. """
  1793. # set parameters.
  1794. ds_name = 'Letter-med'
  1795. mpg_options = {'fit_method': 'k-graphs',
  1796. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1797. 'ds_name': ds_name,
  1798. 'parallel': True, # False
  1799. 'time_limit_in_sec': 0,
  1800. 'max_itrs': 100,
  1801. 'max_itrs_without_update': 3,
  1802. 'epsilon_residual': 0.01,
  1803. 'epsilon_ec': 0.1,
  1804. 'verbose': 2}
  1805. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1806. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1807. kernel_options = {'name': 'ShortestPath',
  1808. 'edge_weight': None,
  1809. 'node_kernels': sub_kernels,
  1810. 'parallel': 'imap_unordered',
  1811. # 'parallel': None,
  1812. 'n_jobs': multiprocessing.cpu_count(),
  1813. 'normalize': True,
  1814. 'verbose': 2}
  1815. ged_options = {'method': 'IPFP',
  1816. 'initialization_method': 'RANDOM', # 'NODE'
  1817. 'initial_solutions': 10, # 1
  1818. 'edit_cost': 'LETTER2',
  1819. 'attr_distance': 'euclidean',
  1820. 'ratio_runs_from_initial_solutions': 1,
  1821. 'threads': multiprocessing.cpu_count(),
  1822. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1823. mge_options = {'init_type': 'MEDOID',
  1824. 'random_inits': 10,
  1825. 'time_limit': 600,
  1826. 'verbose': 2,
  1827. 'update_order': False,
  1828. 'refine': False}
  1829. save_results = True
  1830. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1831. irrelevant_labels = None #
  1832. edge_required = True #
  1833. # print settings.
  1834. file_output = open(dir_save + 'output.txt', 'w')
  1835. sys.stdout = file_output
  1836. print('parameters:')
  1837. print('dataset name:', ds_name)
  1838. print('mpg_options:', mpg_options)
  1839. print('kernel_options:', kernel_options)
  1840. print('ged_options:', ged_options)
  1841. print('mge_options:', mge_options)
  1842. print('save_results:', save_results)
  1843. print('irrelevant_labels:', irrelevant_labels)
  1844. print()
  1845. # generate preimages.
  1846. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1847. print('\n-------------------------------------')
  1848. print('fit method:', fit_method, '\n')
  1849. mpg_options['fit_method'] = fit_method
  1850. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1851. def xp_median_preimage_11_1():
  1852. """xp 11_1: Letter-low, StructuralSP.
  1853. """
  1854. # set parameters.
  1855. ds_name = 'Letter-low'
  1856. mpg_options = {'fit_method': 'k-graphs',
  1857. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1858. 'ds_name': ds_name,
  1859. 'parallel': True, # False
  1860. 'time_limit_in_sec': 0,
  1861. 'max_itrs': 100,
  1862. 'max_itrs_without_update': 3,
  1863. 'epsilon_residual': 0.01,
  1864. 'epsilon_ec': 0.1,
  1865. 'verbose': 2}
  1866. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1867. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1868. kernel_options = {'name': 'StructuralSP',
  1869. 'edge_weight': None,
  1870. 'node_kernels': sub_kernels,
  1871. 'edge_kernels': sub_kernels,
  1872. 'compute_method': 'naive',
  1873. 'parallel': 'imap_unordered',
  1874. # 'parallel': None,
  1875. 'n_jobs': multiprocessing.cpu_count(),
  1876. 'normalize': True,
  1877. 'verbose': 2}
  1878. ged_options = {'method': 'IPFP',
  1879. 'initialization_method': 'RANDOM', # 'NODE'
  1880. 'initial_solutions': 10, # 1
  1881. 'edit_cost': 'LETTER2',
  1882. 'attr_distance': 'euclidean',
  1883. 'ratio_runs_from_initial_solutions': 1,
  1884. 'threads': multiprocessing.cpu_count(),
  1885. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1886. mge_options = {'init_type': 'MEDOID',
  1887. 'random_inits': 10,
  1888. 'time_limit': 600,
  1889. 'verbose': 2,
  1890. 'update_order': False,
  1891. 'refine': False}
  1892. save_results = True
  1893. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1894. # print settings.
  1895. file_output = open(dir_save + 'output.txt', 'w')
  1896. sys.stdout = file_output
  1897. print('parameters:')
  1898. print('dataset name:', ds_name)
  1899. print('mpg_options:', mpg_options)
  1900. print('kernel_options:', kernel_options)
  1901. print('ged_options:', ged_options)
  1902. print('mge_options:', mge_options)
  1903. print('save_results:', save_results)
  1904. # generate preimages.
  1905. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1906. print('\n-------------------------------------')
  1907. print('fit method:', fit_method, '\n')
  1908. mpg_options['fit_method'] = fit_method
  1909. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1910. def xp_median_preimage_11_2():
  1911. """xp 11_2: Letter-low, ShortestPath.
  1912. """
  1913. # set parameters.
  1914. ds_name = 'Letter-low'
  1915. mpg_options = {'fit_method': 'k-graphs',
  1916. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1917. 'ds_name': ds_name,
  1918. 'parallel': True, # False
  1919. 'time_limit_in_sec': 0,
  1920. 'max_itrs': 100,
  1921. 'max_itrs_without_update': 3,
  1922. 'epsilon_residual': 0.01,
  1923. 'epsilon_ec': 0.1,
  1924. 'verbose': 2}
  1925. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1926. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1927. kernel_options = {'name': 'ShortestPath',
  1928. 'edge_weight': None,
  1929. 'node_kernels': sub_kernels,
  1930. 'parallel': 'imap_unordered',
  1931. # 'parallel': None,
  1932. 'n_jobs': multiprocessing.cpu_count(),
  1933. 'normalize': True,
  1934. 'verbose': 2}
  1935. ged_options = {'method': 'IPFP',
  1936. 'initialization_method': 'RANDOM', # 'NODE'
  1937. 'initial_solutions': 10, # 1
  1938. 'edit_cost': 'LETTER2',
  1939. 'attr_distance': 'euclidean',
  1940. 'ratio_runs_from_initial_solutions': 1,
  1941. 'threads': multiprocessing.cpu_count(),
  1942. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1943. mge_options = {'init_type': 'MEDOID',
  1944. 'random_inits': 10,
  1945. 'time_limit': 600,
  1946. 'verbose': 2,
  1947. 'update_order': False,
  1948. 'refine': False}
  1949. save_results = True
  1950. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1951. irrelevant_labels = None #
  1952. edge_required = True #
  1953. # print settings.
  1954. file_output = open(dir_save + 'output.txt', 'w')
  1955. sys.stdout = file_output
  1956. print('parameters:')
  1957. print('dataset name:', ds_name)
  1958. print('mpg_options:', mpg_options)
  1959. print('kernel_options:', kernel_options)
  1960. print('ged_options:', ged_options)
  1961. print('mge_options:', mge_options)
  1962. print('save_results:', save_results)
  1963. print('irrelevant_labels:', irrelevant_labels)
  1964. print()
  1965. # generate preimages.
  1966. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1967. print('\n-------------------------------------')
  1968. print('fit method:', fit_method, '\n')
  1969. mpg_options['fit_method'] = fit_method
  1970. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1971. if __name__ == "__main__":
  1972. # #### xp 1_1: Letter-high, StructuralSP.
  1973. # # xp_median_preimage_1_1()
  1974. # #### xp 1_2: Letter-high, ShortestPath.
  1975. # # xp_median_preimage_1_2()
  1976. # #### xp 10_1: Letter-med, StructuralSP.
  1977. # # xp_median_preimage_10_1()
  1978. # #### xp 10_2: Letter-med, ShortestPath.
  1979. # # xp_median_preimage_10_2()
  1980. # #### xp 11_1: Letter-low, StructuralSP.
  1981. # # xp_median_preimage_11_1()
  1982. # #### xp 11_2: Letter-low, ShortestPath.
  1983. # # xp_median_preimage_11_2()
  1984. #
  1985. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1986. # # xp_median_preimage_2_1()
  1987. #
  1988. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1989. # # xp_median_preimage_3_1()
  1990. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1991. # xp_median_preimage_3_2()
  1992. # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1993. # # xp_median_preimage_4_1()
  1994. #
  1995. # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1996. # # xp_median_preimage_5_1()
  1997. #
  1998. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1999. # # xp_median_preimage_6_1()
  2000. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  2001. # xp_median_preimage_6_2()
  2002. # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  2003. # # xp_median_preimage_7_1()
  2004. # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  2005. # # xp_median_preimage_7_2()
  2006. # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  2007. # # xp_median_preimage_7_3()
  2008. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  2009. # xp_median_preimage_7_4()
  2010. #
  2011. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  2012. # # xp_median_preimage_8_1()
  2013. # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  2014. # # xp_median_preimage_8_2()
  2015. # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  2016. # # xp_median_preimage_8_3()
  2017. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  2018. # xp_median_preimage_8_4()
  2019. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  2020. # xp_median_preimage_9_1()
  2021. # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  2022. # xp_median_preimage_9_2()
  2023. # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  2024. # xp_median_preimage_9_3()
  2025. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  2026. # xp_median_preimage_9_4()
  2027. #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  2028. # xp_median_preimage_12_1()
  2029. #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  2030. # xp_median_preimage_12_2()
  2031. #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  2032. # xp_median_preimage_12_3()
  2033. #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  2034. # xp_median_preimage_12_4()
  2035. #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  2036. # xp_median_preimage_12_5()
  2037. #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  2038. # xp_median_preimage_13_1()
  2039. #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  2040. # xp_median_preimage_13_2()
  2041. # #### xp 1_1: Letter-high, StructuralSP.
  2042. # xp_median_preimage_1_1()
  2043. # #### xp 1_2: Letter-high, ShortestPath.
  2044. # xp_median_preimage_1_2()
  2045. # #### xp 10_1: Letter-med, StructuralSP.
  2046. # xp_median_preimage_10_1()
  2047. # #### xp 10_2: Letter-med, ShortestPath.
  2048. # xp_median_preimage_10_2()
  2049. # #### xp 11_1: Letter-low, StructuralSP.
  2050. # xp_median_preimage_11_1()
  2051. # #### xp 11_2: Letter-low, ShortestPath.
  2052. # xp_median_preimage_11_2()
  2053. #
  2054. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  2055. # # xp_median_preimage_2_1()
  2056. #
  2057. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  2058. # # xp_median_preimage_3_1()
  2059. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  2060. # xp_median_preimage_3_2()
  2061. # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  2062. # # xp_median_preimage_4_1()
  2063. #
  2064. # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  2065. # # xp_median_preimage_5_1()
  2066. #
  2067. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  2068. # xp_median_preimage_6_1()
  2069. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  2070. # xp_median_preimage_6_2()
  2071. # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  2072. # xp_median_preimage_7_1()
  2073. # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  2074. # xp_median_preimage_7_2()
  2075. # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  2076. # xp_median_preimage_7_3()
  2077. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  2078. # xp_median_preimage_7_4()
  2079. #
  2080. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  2081. # xp_median_preimage_8_1()
  2082. # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  2083. # xp_median_preimage_8_2()
  2084. # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  2085. # xp_median_preimage_8_3()
  2086. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  2087. # xp_median_preimage_8_4()
  2088. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  2089. xp_median_preimage_9_1()
  2090. # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  2091. xp_median_preimage_9_2()
  2092. # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  2093. xp_median_preimage_9_3()
  2094. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  2095. xp_median_preimage_9_4()
  2096. #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  2097. xp_median_preimage_12_1()
  2098. #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  2099. xp_median_preimage_12_2()
  2100. #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  2101. xp_median_preimage_12_3()
  2102. #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  2103. xp_median_preimage_12_4()
  2104. #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  2105. xp_median_preimage_12_5()
  2106. #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  2107. xp_median_preimage_13_1()
  2108. #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  2109. xp_median_preimage_13_2()

A Python package for graph kernels, graph edit distances and graph pre-image problem.