You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset.py 23 kB

5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Mar 26 18:48:27 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import networkx as nx
  9. from gklearn.utils.graph_files import load_dataset
  10. import os
  11. class Dataset(object):
  12. def __init__(self, filename=None, filename_targets=None, **kwargs):
  13. if filename is None:
  14. self.__graphs = None
  15. self.__targets = None
  16. self.__node_labels = None
  17. self.__edge_labels = None
  18. self.__node_attrs = None
  19. self.__edge_attrs = None
  20. else:
  21. self.load_dataset(filename, filename_targets=filename_targets, **kwargs)
  22. self.__substructures = None
  23. self.__node_label_dim = None
  24. self.__edge_label_dim = None
  25. self.__directed = None
  26. self.__dataset_size = None
  27. self.__total_node_num = None
  28. self.__ave_node_num = None
  29. self.__min_node_num = None
  30. self.__max_node_num = None
  31. self.__total_edge_num = None
  32. self.__ave_edge_num = None
  33. self.__min_edge_num = None
  34. self.__max_edge_num = None
  35. self.__ave_node_degree = None
  36. self.__min_node_degree = None
  37. self.__max_node_degree = None
  38. self.__ave_fill_factor = None
  39. self.__min_fill_factor = None
  40. self.__max_fill_factor = None
  41. self.__node_label_nums = None
  42. self.__edge_label_nums = None
  43. self.__node_attr_dim = None
  44. self.__edge_attr_dim = None
  45. self.__class_number = None
  46. def load_dataset(self, filename, filename_targets=None, **kwargs):
  47. self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs)
  48. self.__node_labels = label_names['node_labels']
  49. self.__node_attrs = label_names['node_attrs']
  50. self.__edge_labels = label_names['edge_labels']
  51. self.__edge_attrs = label_names['edge_attrs']
  52. self.clean_labels()
  53. def load_graphs(self, graphs, targets=None):
  54. # this has to be followed by set_labels().
  55. self.__graphs = graphs
  56. self.__targets = targets
  57. # self.set_labels_attrs() # @todo
  58. def load_predefined_dataset(self, ds_name):
  59. current_path = os.path.dirname(os.path.realpath(__file__)) + '/'
  60. if ds_name == 'Acyclic':
  61. ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds'
  62. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  63. elif ds_name == 'AIDS':
  64. ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt'
  65. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  66. elif ds_name == 'Alkane':
  67. ds_file = current_path + '../../datasets/Alkane/dataset.ds'
  68. fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt'
  69. self.__graphs, self.__targets, label_names = load_dataset(ds_file, filename_targets=fn_targets)
  70. elif ds_name == 'COIL-DEL':
  71. ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt'
  72. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  73. elif ds_name == 'COIL-RAG':
  74. ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt'
  75. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  76. elif ds_name == 'COLORS-3':
  77. ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt'
  78. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  79. elif ds_name == 'Cuneiform':
  80. ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt'
  81. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  82. elif ds_name == 'Fingerprint':
  83. ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt'
  84. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  85. elif ds_name == 'FRANKENSTEIN':
  86. ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt'
  87. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  88. elif ds_name == 'Letter-high': # node non-symb
  89. ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt'
  90. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  91. elif ds_name == 'Letter-low': # node non-symb
  92. ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt'
  93. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  94. elif ds_name == 'Letter-med': # node non-symb
  95. ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt'
  96. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  97. elif ds_name == 'MAO':
  98. ds_file = current_path + '../../datasets/MAO/dataset.ds'
  99. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  100. elif ds_name == 'Monoterpenoides':
  101. ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds'
  102. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  103. elif ds_name == 'MUTAG':
  104. ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt'
  105. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  106. elif ds_name == 'PAH':
  107. ds_file = current_path + '../../datasets/PAH/dataset.ds'
  108. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  109. elif ds_name == 'SYNTHETIC':
  110. pass
  111. elif ds_name == 'SYNTHETICnew':
  112. ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  113. self.__graphs, self.__targets, label_names = load_dataset(ds_file)
  114. elif ds_name == 'Synthie':
  115. pass
  116. self.__node_labels = label_names['node_labels']
  117. self.__node_attrs = label_names['node_attrs']
  118. self.__edge_labels = label_names['edge_labels']
  119. self.__edge_attrs = label_names['edge_attrs']
  120. self.clean_labels()
  121. def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]):
  122. self.__node_labels = node_labels
  123. self.__node_attrs = node_attrs
  124. self.__edge_labels = edge_labels
  125. self.__edge_attrs = edge_attrs
  126. def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None):
  127. # @todo: remove labels which have only one possible values.
  128. if node_labels is None:
  129. self.__node_labels = self.__graphs[0].graph['node_labels']
  130. # # graphs are considered node unlabeled if all nodes have the same label.
  131. # infos.update({'node_labeled': is_nl if node_label_num > 1 else False})
  132. if node_attrs is None:
  133. self.__node_attrs = self.__graphs[0].graph['node_attrs']
  134. # for G in Gn:
  135. # for n in G.nodes(data=True):
  136. # if 'attributes' in n[1]:
  137. # return len(n[1]['attributes'])
  138. # return 0
  139. if edge_labels is None:
  140. self.__edge_labels = self.__graphs[0].graph['edge_labels']
  141. # # graphs are considered edge unlabeled if all edges have the same label.
  142. # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False})
  143. if edge_attrs is None:
  144. self.__edge_attrs = self.__graphs[0].graph['edge_attrs']
  145. # for G in Gn:
  146. # if nx.number_of_edges(G) > 0:
  147. # for e in G.edges(data=True):
  148. # if 'attributes' in e[2]:
  149. # return len(e[2]['attributes'])
  150. # return 0
  151. def get_dataset_infos(self, keys=None):
  152. """Computes and returns the structure and property information of the graph dataset.
  153. Parameters
  154. ----------
  155. keys : list
  156. List of strings which indicate which informations will be returned. The
  157. possible choices includes:
  158. 'substructures': sub-structures graphs contains, including 'linear', 'non
  159. linear' and 'cyclic'.
  160. 'node_label_dim': whether vertices have symbolic labels.
  161. 'edge_label_dim': whether egdes have symbolic labels.
  162. 'directed': whether graphs in dataset are directed.
  163. 'dataset_size': number of graphs in dataset.
  164. 'total_node_num': total number of vertices of all graphs in dataset.
  165. 'ave_node_num': average number of vertices of graphs in dataset.
  166. 'min_node_num': minimum number of vertices of graphs in dataset.
  167. 'max_node_num': maximum number of vertices of graphs in dataset.
  168. 'total_edge_num': total number of edges of all graphs in dataset.
  169. 'ave_edge_num': average number of edges of graphs in dataset.
  170. 'min_edge_num': minimum number of edges of graphs in dataset.
  171. 'max_edge_num': maximum number of edges of graphs in dataset.
  172. 'ave_node_degree': average vertex degree of graphs in dataset.
  173. 'min_node_degree': minimum vertex degree of graphs in dataset.
  174. 'max_node_degree': maximum vertex degree of graphs in dataset.
  175. 'ave_fill_factor': average fill factor (number_of_edges /
  176. (number_of_nodes ** 2)) of graphs in dataset.
  177. 'min_fill_factor': minimum fill factor of graphs in dataset.
  178. 'max_fill_factor': maximum fill factor of graphs in dataset.
  179. 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset.
  180. 'edge_label_nums': list number of symbolic edge labels of graphs in dataset.
  181. 'node_attr_dim': number of dimensions of non-symbolic vertex labels.
  182. Extracted from the 'attributes' attribute of graph nodes.
  183. 'edge_attr_dim': number of dimensions of non-symbolic edge labels.
  184. Extracted from the 'attributes' attribute of graph edges.
  185. 'class_number': number of classes. Only available for classification problems.
  186. All informations above will be returned if `keys` is not given.
  187. Return
  188. ------
  189. dict
  190. Information of the graph dataset keyed by `keys`.
  191. """
  192. infos = {}
  193. if keys == None:
  194. keys = [
  195. 'substructures',
  196. 'node_label_dim',
  197. 'edge_label_dim',
  198. 'directed',
  199. 'dataset_size',
  200. 'total_node_num',
  201. 'ave_node_num',
  202. 'min_node_num',
  203. 'max_node_num',
  204. 'total_edge_num',
  205. 'ave_edge_num',
  206. 'min_edge_num',
  207. 'max_edge_num',
  208. 'ave_node_degree',
  209. 'min_node_degree',
  210. 'max_node_degree',
  211. 'ave_fill_factor',
  212. 'min_fill_factor',
  213. 'max_fill_factor',
  214. 'node_label_nums',
  215. 'edge_label_nums',
  216. 'node_attr_dim',
  217. 'edge_attr_dim',
  218. 'class_number',
  219. ]
  220. # dataset size
  221. if 'dataset_size' in keys:
  222. if self.__dataset_size is None:
  223. self.__dataset_size = self.__get_dataset_size()
  224. infos['dataset_size'] = self.__dataset_size
  225. # graph node number
  226. if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']):
  227. all_node_nums = self.__get_all_node_nums()
  228. if 'total_node_num' in keys:
  229. if self.__total_node_num is None:
  230. self.__total_node_num = self.__get_total_node_num(all_node_nums)
  231. infos['total_node_num'] = self.__total_node_num
  232. if 'ave_node_num' in keys:
  233. if self.__ave_node_num is None:
  234. self.__ave_node_num = self.__get_ave_node_num(all_node_nums)
  235. infos['ave_node_num'] = self.__ave_node_num
  236. if 'min_node_num' in keys:
  237. if self.__min_node_num is None:
  238. self.__min_node_num = self.__get_min_node_num(all_node_nums)
  239. infos['min_node_num'] = self.__min_node_num
  240. if 'max_node_num' in keys:
  241. if self.__max_node_num is None:
  242. self.__max_node_num = self.__get_max_node_num(all_node_nums)
  243. infos['max_node_num'] = self.__max_node_num
  244. # graph edge number
  245. if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']):
  246. all_edge_nums = self.__get_all_edge_nums()
  247. if 'total_edge_num' in keys:
  248. if self.__total_edge_num is None:
  249. self.__total_edge_num = self.__get_total_edge_num(all_edge_nums)
  250. infos['total_edge_num'] = self.__total_edge_num
  251. if 'ave_edge_num' in keys:
  252. if self.__ave_edge_num is None:
  253. self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums)
  254. infos['ave_edge_num'] = self.__ave_edge_num
  255. if 'max_edge_num' in keys:
  256. if self.__max_edge_num is None:
  257. self.__max_edge_num = self.__get_max_edge_num(all_edge_nums)
  258. infos['max_edge_num'] = self.__max_edge_num
  259. if 'min_edge_num' in keys:
  260. if self.__min_edge_num is None:
  261. self.__min_edge_num = self.__get_min_edge_num(all_edge_nums)
  262. infos['min_edge_num'] = self.__min_edge_num
  263. # label number
  264. if 'node_label_dim' in keys:
  265. if self.__node_label_dim is None:
  266. self.__node_label_dim = self.__get_node_label_dim()
  267. infos['node_label_dim'] = self.__node_label_dim
  268. if 'node_label_nums' in keys:
  269. if self.__node_label_nums is None:
  270. self.__node_label_nums = {}
  271. for node_label in self.__node_labels:
  272. self.__node_label_nums[node_label] = self.__get_node_label_num(node_label)
  273. infos['node_label_nums'] = self.__node_label_nums
  274. if 'edge_label_dim' in keys:
  275. if self.__edge_label_dim is None:
  276. self.__edge_label_dim = self.__get_edge_label_dim()
  277. infos['edge_label_dim'] = self.__edge_label_dim
  278. if 'edge_label_nums' in keys:
  279. if self.__edge_label_nums is None:
  280. self.__edge_label_nums = {}
  281. for edge_label in self.__edge_labels:
  282. self.__edge_label_nums[edge_label] = self.__get_edge_label_num(edge_label)
  283. infos['edge_label_nums'] = self.__edge_label_nums
  284. if 'directed' in keys or 'substructures' in keys:
  285. if self.__directed is None:
  286. self.__directed = self.__is_directed()
  287. infos['directed'] = self.__directed
  288. # node degree
  289. if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']):
  290. all_node_degrees = self.__get_all_node_degrees()
  291. if 'ave_node_degree' in keys:
  292. if self.__ave_node_degree is None:
  293. self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees)
  294. infos['ave_node_degree'] = self.__ave_node_degree
  295. if 'max_node_degree' in keys:
  296. if self.__max_node_degree is None:
  297. self.__max_node_degree = self.__get_max_node_degree(all_node_degrees)
  298. infos['max_node_degree'] = self.__max_node_degree
  299. if 'min_node_degree' in keys:
  300. if self.__min_node_degree is None:
  301. self.__min_node_degree = self.__get_min_node_degree(all_node_degrees)
  302. infos['min_node_degree'] = self.__min_node_degree
  303. # fill factor
  304. if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']):
  305. all_fill_factors = self.__get_all_fill_factors()
  306. if 'ave_fill_factor' in keys:
  307. if self.__ave_fill_factor is None:
  308. self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors)
  309. infos['ave_fill_factor'] = self.__ave_fill_factor
  310. if 'max_fill_factor' in keys:
  311. if self.__max_fill_factor is None:
  312. self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors)
  313. infos['max_fill_factor'] = self.__max_fill_factor
  314. if 'min_fill_factor' in keys:
  315. if self.__min_fill_factor is None:
  316. self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors)
  317. infos['min_fill_factor'] = self.__min_fill_factor
  318. if 'substructures' in keys:
  319. if self.__substructures is None:
  320. self.__substructures = self.__get_substructures()
  321. infos['substructures'] = self.__substructures
  322. if 'class_number' in keys:
  323. if self.__class_number is None:
  324. self.__class_number = self.__get_class_number()
  325. infos['class_number'] = self.__class_number
  326. if 'node_attr_dim' in keys:
  327. if self.__node_attr_dim is None:
  328. self.__node_attr_dim = self.__get_node_attr_dim()
  329. infos['node_attr_dim'] = self.__node_attr_dim
  330. if 'edge_attr_dim' in keys:
  331. if self.__edge_attr_dim is None:
  332. self.__edge_attr_dim = self.__get_edge_attr_dim()
  333. infos['edge_attr_dim'] = self.__edge_attr_dim
  334. return infos
  335. def print_graph_infos(self, infos):
  336. from collections import OrderedDict
  337. keys = list(infos.keys())
  338. print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0]))))
  339. def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  340. node_labels = [item for item in node_labels if item in self.__node_labels]
  341. edge_labels = [item for item in edge_labels if item in self.__edge_labels]
  342. node_attrs = [item for item in node_attrs if item in self.__node_attrs]
  343. edge_attrs = [item for item in edge_attrs if item in self.__edge_attrs]
  344. for g in self.__graphs:
  345. for nd in g.nodes():
  346. for nl in node_labels:
  347. del g.nodes[nd][nl]
  348. for na in node_attrs:
  349. del g.nodes[nd][na]
  350. for ed in g.edges():
  351. for el in edge_labels:
  352. del g.edges[ed][el]
  353. for ea in edge_attrs:
  354. del g.edges[ed][ea]
  355. if len(node_labels) > 0:
  356. self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels]
  357. if len(edge_labels) > 0:
  358. self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels]
  359. if len(node_attrs) > 0:
  360. self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs]
  361. if len(edge_attrs) > 0:
  362. self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs]
  363. def clean_labels(self):
  364. labels = []
  365. for name in self.__node_labels:
  366. label = set()
  367. for G in self.__graphs:
  368. label = label | set(nx.get_node_attributes(G, name).values())
  369. if len(label) > 1:
  370. labels.append(name)
  371. break
  372. if len(label) < 2:
  373. for G in self.__graphs:
  374. for nd in G.nodes():
  375. del G.nodes[nd][name]
  376. self.__node_labels = labels
  377. labels = []
  378. for name in self.__edge_labels:
  379. label = set()
  380. for G in self.__graphs:
  381. label = label | set(nx.get_edge_attributes(G, name).values())
  382. if len(label) > 1:
  383. labels.append(name)
  384. break
  385. if len(label) < 2:
  386. for G in self.__graphs:
  387. for ed in G.edges():
  388. del G.edges[ed][name]
  389. self.__edge_labels = labels
  390. labels = []
  391. for name in self.__node_attrs:
  392. label = set()
  393. for G in self.__graphs:
  394. label = label | set(nx.get_node_attributes(G, name).values())
  395. if len(label) > 1:
  396. labels.append(name)
  397. break
  398. if len(label) < 2:
  399. for G in self.__graphs:
  400. for nd in G.nodes():
  401. del G.nodes[nd][name]
  402. self.__node_attrs = labels
  403. labels = []
  404. for name in self.__edge_attrs:
  405. label = set()
  406. for G in self.__graphs:
  407. label = label | set(nx.get_edge_attributes(G, name).values())
  408. if len(label) > 1:
  409. labels.append(name)
  410. break
  411. if len(label) < 2:
  412. for G in self.__graphs:
  413. for ed in G.edges():
  414. del G.edges[ed][name]
  415. self.__edge_attrs = labels
  416. def cut_graphs(self, range_):
  417. self.__graphs = [self.__graphs[i] for i in range_]
  418. if self.__targets is not None:
  419. self.__targets = [self.__targets[i] for i in range_]
  420. self.clean_labels()
  421. def trim_dataset(self, edge_required=False):
  422. if edge_required:
  423. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)]
  424. else:
  425. trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0]
  426. idx = [p[0] for p in trimed_pairs]
  427. self.__graphs = [p[1] for p in trimed_pairs]
  428. self.__targets = [self.__targets[i] for i in idx]
  429. self.clean_labels()
  430. def __get_dataset_size(self):
  431. return len(self.__graphs)
  432. def __get_all_node_nums(self):
  433. return [nx.number_of_nodes(G) for G in self.__graphs]
  434. def __get_total_node_nums(self, all_node_nums):
  435. return np.sum(all_node_nums)
  436. def __get_ave_node_num(self, all_node_nums):
  437. return np.mean(all_node_nums)
  438. def __get_min_node_num(self, all_node_nums):
  439. return np.amin(all_node_nums)
  440. def __get_max_node_num(self, all_node_nums):
  441. return np.amax(all_node_nums)
  442. def __get_all_edge_nums(self):
  443. return [nx.number_of_edges(G) for G in self.__graphs]
  444. def __get_total_edge_nums(self, all_edge_nums):
  445. return np.sum(all_edge_nums)
  446. def __get_ave_edge_num(self, all_edge_nums):
  447. return np.mean(all_edge_nums)
  448. def __get_min_edge_num(self, all_edge_nums):
  449. return np.amin(all_edge_nums)
  450. def __get_max_edge_num(self, all_edge_nums):
  451. return np.amax(all_edge_nums)
  452. def __get_node_label_dim(self):
  453. return len(self.__node_labels)
  454. def __get_node_label_num(self, node_label):
  455. nl = set()
  456. for G in self.__graphs:
  457. nl = nl | set(nx.get_node_attributes(G, node_label).values())
  458. return len(nl)
  459. def __get_edge_label_dim(self):
  460. return len(self.__edge_labels)
  461. def __get_edge_label_num(self, edge_label):
  462. el = set()
  463. for G in self.__graphs:
  464. el = el | set(nx.get_edge_attributes(G, edge_label).values())
  465. return len(el)
  466. def __is_directed(self):
  467. return nx.is_directed(self.__graphs[0])
  468. def __get_all_node_degrees(self):
  469. return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs]
  470. def __get_ave_node_degree(self, all_node_degrees):
  471. return np.mean(all_node_degrees)
  472. def __get_max_node_degree(self, all_node_degrees):
  473. return np.amax(all_node_degrees)
  474. def __get_min_node_degree(self, all_node_degrees):
  475. return np.amin(all_node_degrees)
  476. def __get_all_fill_factors(self):
  477. """
  478. Get fill factor, the number of non-zero entries in the adjacency matrix.
  479. Returns
  480. -------
  481. list[float]
  482. List of fill factors for all graphs.
  483. """
  484. return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs]
  485. def __get_ave_fill_factor(self, all_fill_factors):
  486. return np.mean(all_fill_factors)
  487. def __get_max_fill_factor(self, all_fill_factors):
  488. return np.amax(all_fill_factors)
  489. def __get_min_fill_factor(self, all_fill_factors):
  490. return np.amin(all_fill_factors)
  491. def __get_substructures(self):
  492. subs = set()
  493. for G in self.__graphs:
  494. degrees = list(dict(G.degree()).values())
  495. if any(i == 2 for i in degrees):
  496. subs.add('linear')
  497. if np.amax(degrees) >= 3:
  498. subs.add('non linear')
  499. if 'linear' in subs and 'non linear' in subs:
  500. break
  501. if self.__directed:
  502. for G in self.__graphs:
  503. if len(list(nx.find_cycle(G))) > 0:
  504. subs.add('cyclic')
  505. break
  506. # else:
  507. # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way.
  508. # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10
  509. # for G in Gn:
  510. # if (nx.number_of_edges(G) < upper):
  511. # cyc = list(nx.simple_cycles(G.to_directed()))
  512. # if any(len(i) > 2 for i in cyc):
  513. # subs.add('cyclic')
  514. # break
  515. # if 'cyclic' not in subs:
  516. # for G in Gn:
  517. # cyc = list(nx.simple_cycles(G.to_directed()))
  518. # if any(len(i) > 2 for i in cyc):
  519. # subs.add('cyclic')
  520. # break
  521. return subs
  522. def __get_class_num(self):
  523. return len(set(self.__targets))
  524. def __get_node_attr_dim(self):
  525. return len(self.__node_attrs)
  526. def __get_edge_attr_dim(self):
  527. return len(self.__edge_attrs)
  528. @property
  529. def graphs(self):
  530. return self.__graphs
  531. @property
  532. def targets(self):
  533. return self.__targets
  534. @property
  535. def node_labels(self):
  536. return self.__node_labels
  537. @property
  538. def edge_labels(self):
  539. return self.__edge_labels
  540. @property
  541. def node_attrs(self):
  542. return self.__node_attrs
  543. @property
  544. def edge_attrs(self):
  545. return self.__edge_attrs
  546. def split_dataset_by_target(dataset):
  547. from gklearn.preimage.utils import get_same_item_indices
  548. graphs = dataset.graphs
  549. targets = dataset.targets
  550. datasets = []
  551. idx_targets = get_same_item_indices(targets)
  552. for key, val in idx_targets.items():
  553. sub_graphs = [graphs[i] for i in val]
  554. sub_dataset = Dataset()
  555. sub_dataset.load_graphs(sub_graphs, [key] * len(val))
  556. sub_dataset.set_labels(node_labels=dataset.node_labels, node_attrs=dataset.node_attrs, edge_labels=dataset.edge_labels, edge_attrs=dataset.edge_attrs)
  557. datasets.append(sub_dataset)
  558. # @todo: clean_labels?
  559. return datasets

A Python package for graph kernels, graph edit distances and graph pre-image problem.