You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

visualization.py 28 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Dec 19 17:16:23 2019
  5. @author: ljia
  6. """
  7. import numpy as np
  8. from sklearn.manifold import TSNE, Isomap
  9. import matplotlib.pyplot as plt
  10. from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes, mark_inset
  11. from tqdm import tqdm
  12. from gklearn.utils.graphfiles import loadDataset, loadGXL
  13. from gklearn.preimage.utils import kernel_distance_matrix, compute_kernel, dis_gstar, get_same_item_indices
  14. def visualize_graph_dataset(dis_measure, visual_method, draw_figure,
  15. draw_params={}, dis_mat=None, Gn=None,
  16. median_set=None):
  17. def draw_zoomed_axes(Gn_embedded, ax):
  18. margin = 0.01
  19. if dis_measure == 'graph-kernel':
  20. index = -2
  21. elif dis_measure == 'ged':
  22. index = -1
  23. x1 = np.min(Gn_embedded[median_set + [index], 0]) - margin * np.max(Gn_embedded)
  24. x2 = np.max(Gn_embedded[median_set + [index], 0]) + margin * np.max(Gn_embedded)
  25. y1 = np.min(Gn_embedded[median_set + [index], 1]) - margin * np.max(Gn_embedded)
  26. y2 = np.max(Gn_embedded[median_set + [index], 1]) + margin * np.max(Gn_embedded)
  27. if (x1 < 0 and y1 < 0) or ((x1 > 0 and y1 > 0)):
  28. loc = 2
  29. else:
  30. loc = 3
  31. axins = zoomed_inset_axes(ax, 4, loc=loc) # zoom-factor: 2.5, location: upper-left
  32. draw_figure(axins, Gn_embedded, dis_measure=dis_measure,
  33. median_set=median_set, **draw_params)
  34. axins.set_xlim(x1, x2) # apply the x-limits
  35. axins.set_ylim(y1, y2) # apply the y-limits
  36. plt.yticks(visible=False)
  37. plt.xticks(visible=False)
  38. loc1 = 1 if loc == 2 else 3
  39. mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
  40. if dis_mat is None:
  41. if dis_measure == 'graph-kernel':
  42. gkernel = 'untilhpathkernel'
  43. node_label = 'atom'
  44. edge_label = 'bond_type'
  45. dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label,
  46. Kmatrix=None, gkernel=gkernel)
  47. elif dis_measure == 'ged':
  48. pass
  49. if visual_method == 'tsne':
  50. Gn_embedded = TSNE(n_components=2, metric='precomputed').fit_transform(dis_mat)
  51. elif visual_method == 'isomap':
  52. Gn_embedded = Isomap(n_components=2, metric='precomputed').fit_transform(dis_mat)
  53. print(Gn_embedded.shape)
  54. fig, ax = plt.subplots()
  55. draw_figure(plt, Gn_embedded, dis_measure=dis_measure, legend=True,
  56. median_set=median_set, **draw_params)
  57. # draw_zoomed_axes(Gn_embedded, ax)
  58. plt.show()
  59. plt.clf()
  60. return
  61. def draw_figure(ax, Gn_embedded, dis_measure=None, y_idx=None, legend=False,
  62. median_set=None):
  63. from matplotlib import colors as mcolors
  64. colors = list(dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS))
  65. # colors = ['#08306b', '#08519c', '#2171b5', '#4292c6', '#6baed6', '#9ecae1',
  66. # '#c6dbef', '#deebf7']
  67. # for i, values in enumerate(y_idx.values()):
  68. # for item in values:
  69. ## ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c=colors[i]) # , c='b')
  70. # ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c='b')
  71. # ax.scatter(Gn_embedded[:,0], Gn_embedded[:,1], c='b')
  72. h1 = ax.scatter(Gn_embedded[median_set, 0], Gn_embedded[median_set, 1], c='b')
  73. if dis_measure == 'graph-kernel':
  74. h2 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='darkorchid') # \psi
  75. h3 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='gold') # gen median
  76. h4 = ax.scatter(Gn_embedded[-3, 0], Gn_embedded[-3, 1], c='r') #c='g', marker='+') # set median
  77. elif dis_measure == 'ged':
  78. h3 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='gold') # gen median
  79. h4 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='r') #c='g', marker='+') # set median
  80. if legend:
  81. # fig.subplots_adjust(bottom=0.17)
  82. if dis_measure == 'graph-kernel':
  83. ax.legend([h1, h2, h3, h4],
  84. ['k closest graphs', 'true median', 'gen median', 'set median'])
  85. elif dis_measure == 'ged':
  86. ax.legend([h1, h3, h4], ['k closest graphs', 'gen median', 'set median'])
  87. # fig.legend(handles, labels, loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6)
  88. # plt.savefig('symbolic_and_non_comparison_vertical_short.eps', format='eps', dpi=300, transparent=True,
  89. # bbox_inches='tight')
  90. # plt.show()
  91. ###############################################################################
  92. def visualize_distances_in_kernel():
  93. ds = {'name': 'monoterpenoides',
  94. 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  95. Gn, y_all = loadDataset(ds['dataset'])
  96. # Gn = Gn[0:50]
  97. fname_medians = 'expert.treelet'
  98. # add set median.
  99. fname_sm = 'results/test_k_closest_graphs/set_median.' + fname_medians + '.gxl'
  100. set_median = loadGXL(fname_sm)
  101. Gn.append(set_median)
  102. # add generalized median (estimated pre-image.)
  103. fname_gm = 'results/test_k_closest_graphs/gen_median.' + fname_medians + '.gxl'
  104. gen_median = loadGXL(fname_gm)
  105. Gn.append(gen_median)
  106. # compute distance matrix
  107. median_set = [22, 29, 54, 74]
  108. gkernel = 'treeletkernel'
  109. node_label = 'atom'
  110. edge_label = 'bond_type'
  111. Gn_median_set = [Gn[i].copy() for i in median_set]
  112. Kmatrix_median = compute_kernel(Gn + Gn_median_set, gkernel, node_label,
  113. edge_label, True)
  114. Kmatrix = Kmatrix_median[0:len(Gn), 0:len(Gn)]
  115. dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label,
  116. Kmatrix=Kmatrix, gkernel=gkernel)
  117. print('average distances: ', np.mean(np.mean(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  118. print('min distances: ', np.min(np.min(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  119. print('max distances: ', np.max(np.max(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  120. # add distances for the image of exact median \psi.
  121. dis_k_median_list = []
  122. for idx, g in enumerate(Gn):
  123. dis_k_median_list.append(dis_gstar(idx, range(len(Gn), len(Gn) + len(Gn_median_set)),
  124. [1 / len(Gn_median_set)] * len(Gn_median_set),
  125. Kmatrix_median, withterm3=False))
  126. dis_mat_median = np.zeros((len(Gn) + 1, len(Gn) + 1))
  127. for i in range(len(Gn)):
  128. for j in range(i, len(Gn)):
  129. dis_mat_median[i, j] = dis_mat[i, j]
  130. dis_mat_median[j, i] = dis_mat_median[i, j]
  131. for i in range(len(Gn)):
  132. dis_mat_median[i, -1] = dis_k_median_list[i]
  133. dis_mat_median[-1, i] = dis_k_median_list[i]
  134. # get indices by classes.
  135. y_idx = get_same_item_indices(y_all)
  136. # visualization.
  137. # visualize_graph_dataset('graph-kernel', 'tsne', Gn)
  138. # visualize_graph_dataset('graph-kernel', 'tsne', draw_figure,
  139. # draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median)
  140. visualize_graph_dataset('graph-kernel', 'tsne', draw_figure,
  141. draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median,
  142. median_set=median_set)
  143. def visualize_distances_in_ged():
  144. from gklearn.preimage.fitDistance import compute_geds
  145. from gklearn.preimage.ged import GED
  146. ds = {'name': 'monoterpenoides',
  147. 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  148. Gn, y_all = loadDataset(ds['dataset'])
  149. # Gn = Gn[0:50]
  150. # add set median.
  151. fname_medians = 'expert.treelet'
  152. fname_sm = 'preimage/results/test_k_closest_graphs/set_median.' + fname_medians + '.gxl'
  153. set_median = loadGXL(fname_sm)
  154. Gn.append(set_median)
  155. # add generalized median (estimated pre-image.)
  156. fname_gm = 'preimage/results/test_k_closest_graphs/gen_median.' + fname_medians + '.gxl'
  157. gen_median = loadGXL(fname_gm)
  158. Gn.append(gen_median)
  159. # compute/load ged matrix.
  160. # # compute.
  161. ## k = 4
  162. ## edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297]
  163. # edit_costs = [3, 3, 1, 3, 3, 1]
  164. ## edit_costs = [7, 3, 5, 9, 2, 6]
  165. # algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'
  166. # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP',
  167. # 'algo_options': algo_options, 'stabilizer': None,
  168. # 'edit_cost_constant': edit_costs}
  169. # _, ged_mat, _ = compute_geds(Gn, params_ged=params_ged, parallel=True)
  170. # np.savez('results/test_k_closest_graphs/ged_mat.' + fname_medians + '.with_medians.gm', ged_mat=ged_mat)
  171. # load from file.
  172. gmfile = np.load('results/test_k_closest_graphs/ged_mat.' + fname_medians + '.with_medians.gm.npz')
  173. ged_mat = gmfile['ged_mat']
  174. # # change medians.
  175. # edit_costs = [3, 3, 1, 3, 3, 1]
  176. # algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'
  177. # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP',
  178. # 'algo_options': algo_options, 'stabilizer': None,
  179. # 'edit_cost_constant': edit_costs}
  180. # for idx in tqdm(range(len(Gn) - 2), desc='computing GEDs', file=sys.stdout):
  181. # dis, _, _ = GED(Gn[idx], set_median, **params_ged)
  182. # ged_mat[idx, -2] = dis
  183. # ged_mat[-2, idx] = dis
  184. # dis, _, _ = GED(Gn[idx], gen_median, **params_ged)
  185. # ged_mat[idx, -1] = dis
  186. # ged_mat[-1, idx] = dis
  187. # np.savez('results/test_k_closest_graphs/ged_mat.' + fname_medians + '.with_medians.gm',
  188. # ged_mat=ged_mat)
  189. # get indices by classes.
  190. y_idx = get_same_item_indices(y_all)
  191. # visualization.
  192. median_set = [22, 29, 54, 74]
  193. visualize_graph_dataset('ged', 'tsne', draw_figure,
  194. draw_params={'y_idx': y_idx}, dis_mat=ged_mat,
  195. median_set=median_set)
  196. ###############################################################################
  197. def visualize_distances_in_kernel_monoterpenoides():
  198. import os
  199. ds = {'dataset': '../datasets/monoterpenoides/dataset_10+.ds',
  200. 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/'} # node/edge symb
  201. Gn_original, y_all = loadDataset(ds['dataset'])
  202. # Gn = Gn[0:50]
  203. # compute distance matrix
  204. # median_set = [22, 29, 54, 74]
  205. gkernel = 'treeletkernel'
  206. fit_method = 'expert'
  207. node_label = 'atom'
  208. edge_label = 'bond_type'
  209. ds_name = 'monoterpenoides'
  210. fname_medians = fit_method + '.' + gkernel
  211. dir_output = 'results/xp_monoterpenoides/'
  212. repeat = 0
  213. # get indices by classes.
  214. y_idx = get_same_item_indices(y_all)
  215. for i, (y, values) in enumerate(y_idx.items()):
  216. print('\ny =', y)
  217. k = len(values)
  218. Gn = [Gn_original[g].copy() for g in values]
  219. # add set median.
  220. fname_sm = dir_output + 'medians/' + str(int(y)) + '/set_median.k' + str(int(k)) \
  221. + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl'
  222. set_median = loadGXL(fname_sm)
  223. Gn.append(set_median)
  224. # add generalized median (estimated pre-image.)
  225. fname_gm = dir_output + 'medians/' + str(int(y)) + '/gen_median.k' + str(int(k)) \
  226. + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl'
  227. gen_median = loadGXL(fname_gm)
  228. Gn.append(gen_median)
  229. # compute distance matrix
  230. median_set = range(0, len(values))
  231. Gn_median_set = [Gn[i].copy() for i in median_set]
  232. Kmatrix_median = compute_kernel(Gn + Gn_median_set, gkernel, node_label,
  233. edge_label, False)
  234. Kmatrix = Kmatrix_median[0:len(Gn), 0:len(Gn)]
  235. dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label,
  236. Kmatrix=Kmatrix, gkernel=gkernel)
  237. print('average distances: ', np.mean(np.mean(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  238. print('min distances: ', np.min(np.min(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  239. print('max distances: ', np.max(np.max(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  240. # add distances for the image of exact median \psi.
  241. dis_k_median_list = []
  242. for idx, g in enumerate(Gn):
  243. dis_k_median_list.append(dis_gstar(idx, range(len(Gn), len(Gn) + len(Gn_median_set)),
  244. [1 / len(Gn_median_set)] * len(Gn_median_set),
  245. Kmatrix_median, withterm3=False))
  246. dis_mat_median = np.zeros((len(Gn) + 1, len(Gn) + 1))
  247. for i in range(len(Gn)):
  248. for j in range(i, len(Gn)):
  249. dis_mat_median[i, j] = dis_mat[i, j]
  250. dis_mat_median[j, i] = dis_mat_median[i, j]
  251. for i in range(len(Gn)):
  252. dis_mat_median[i, -1] = dis_k_median_list[i]
  253. dis_mat_median[-1, i] = dis_k_median_list[i]
  254. # visualization.
  255. # visualize_graph_dataset('graph-kernel', 'tsne', Gn)
  256. # visualize_graph_dataset('graph-kernel', 'tsne', draw_figure,
  257. # draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median)
  258. visualize_graph_dataset('graph-kernel', 'tsne', draw_figure,
  259. draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median,
  260. median_set=median_set)
  261. def visualize_distances_in_ged_monoterpenoides():
  262. from gklearn.preimage.fitDistance import compute_geds
  263. from gklearn.preimage.ged import GED
  264. import os
  265. ds = {'dataset': '../datasets/monoterpenoides/dataset_10+.ds',
  266. 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/'} # node/edge symb
  267. Gn_original, y_all = loadDataset(ds['dataset'])
  268. # Gn = Gn[0:50]
  269. # compute distance matrix
  270. # median_set = [22, 29, 54, 74]
  271. gkernel = 'treeletkernel'
  272. fit_method = 'expert'
  273. ds_name = 'monoterpenoides'
  274. fname_medians = fit_method + '.' + gkernel
  275. dir_output = 'results/xp_monoterpenoides/'
  276. repeat = 0
  277. # edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297]
  278. edit_costs = [3, 3, 1, 3, 3, 1]
  279. # edit_costs = [7, 3, 5, 9, 2, 6]
  280. # get indices by classes.
  281. y_idx = get_same_item_indices(y_all)
  282. for i, (y, values) in enumerate(y_idx.items()):
  283. print('\ny =', y)
  284. k = len(values)
  285. Gn = [Gn_original[g].copy() for g in values]
  286. # add set median.
  287. fname_sm = dir_output + 'medians/' + str(int(y)) + '/set_median.k' + str(int(k)) \
  288. + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl'
  289. set_median = loadGXL(fname_sm)
  290. Gn.append(set_median)
  291. # add generalized median (estimated pre-image.)
  292. fname_gm = dir_output + 'medians/' + str(int(y)) + '/gen_median.k' + str(int(k)) \
  293. + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl'
  294. gen_median = loadGXL(fname_gm)
  295. Gn.append(gen_median)
  296. # compute/load ged matrix.
  297. # compute.
  298. algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'
  299. params_ged = {'dataset': ds_name, 'lib': 'gedlibpy', 'cost': 'CONSTANT',
  300. 'method': 'IPFP', 'algo_options': algo_options,
  301. 'stabilizer': None, 'edit_cost_constant': edit_costs}
  302. _, ged_mat, _ = compute_geds(Gn, params_ged=params_ged, parallel=True)
  303. np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + str(int(y)) \
  304. + '.with_medians.gm', ged_mat=ged_mat)
  305. # # load from file.
  306. # gmfile = np.load('dir_output + 'ged_mat.' + fname_medians + '.y' + str(int(y)) + '.with_medians.gm.npz')
  307. # ged_mat = gmfile['ged_mat']
  308. # # change medians.
  309. # algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'
  310. # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP',
  311. # 'algo_options': algo_options, 'stabilizer': None,
  312. # 'edit_cost_constant': edit_costs}
  313. # for idx in tqdm(range(len(Gn) - 2), desc='computing GEDs', file=sys.stdout):
  314. # dis, _, _ = GED(Gn[idx], set_median, **params_ged)
  315. # ged_mat[idx, -2] = dis
  316. # ged_mat[-2, idx] = dis
  317. # dis, _, _ = GED(Gn[idx], gen_median, **params_ged)
  318. # ged_mat[idx, -1] = dis
  319. # ged_mat[-1, idx] = dis
  320. # np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + str(int(y)) + '.with_medians.gm',
  321. # ged_mat=ged_mat)
  322. # visualization.
  323. median_set = range(0, len(values))
  324. visualize_graph_dataset('ged', 'tsne', draw_figure,
  325. draw_params={'y_idx': y_idx}, dis_mat=ged_mat,
  326. median_set=median_set)
  327. ###############################################################################
  328. def visualize_distances_in_kernel_letter_h():
  329. ds = {'dataset': 'cpp_ext/data/collections/Letter.xml',
  330. 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb
  331. Gn_original, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir'])
  332. # Gn = Gn[0:50]
  333. # compute distance matrix
  334. # median_set = [22, 29, 54, 74]
  335. gkernel = 'structuralspkernel'
  336. fit_method = 'expert'
  337. node_label = None
  338. edge_label = None
  339. ds_name = 'letter-h'
  340. fname_medians = fit_method + '.' + gkernel
  341. dir_output = 'results/xp_letter_h/'
  342. k = 150
  343. repeat = 0
  344. # get indices by classes.
  345. y_idx = get_same_item_indices(y_all)
  346. for i, (y, values) in enumerate(y_idx.items()):
  347. print('\ny =', y)
  348. Gn = [Gn_original[g].copy() for g in values]
  349. # add set median.
  350. fname_sm = dir_output + 'medians/' + y + '/set_median.k' + str(int(k)) \
  351. + '.y' + y + '.repeat' + str(repeat) + '.gxl'
  352. set_median = loadGXL(fname_sm)
  353. Gn.append(set_median)
  354. # add generalized median (estimated pre-image.)
  355. fname_gm = dir_output + 'medians/' + y + '/gen_median.k' + str(int(k)) \
  356. + '.y' + y + '.repeat' + str(repeat) + '.gxl'
  357. gen_median = loadGXL(fname_gm)
  358. Gn.append(gen_median)
  359. # compute distance matrix
  360. median_set = range(0, len(values))
  361. Gn_median_set = [Gn[i].copy() for i in median_set]
  362. Kmatrix_median = compute_kernel(Gn + Gn_median_set, gkernel, node_label,
  363. edge_label, False)
  364. Kmatrix = Kmatrix_median[0:len(Gn), 0:len(Gn)]
  365. dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label,
  366. Kmatrix=Kmatrix, gkernel=gkernel)
  367. print('average distances: ', np.mean(np.mean(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  368. print('min distances: ', np.min(np.min(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  369. print('max distances: ', np.max(np.max(dis_mat[0:len(Gn)-2, 0:len(Gn)-2])))
  370. # add distances for the image of exact median \psi.
  371. dis_k_median_list = []
  372. for idx, g in enumerate(Gn):
  373. dis_k_median_list.append(dis_gstar(idx, range(len(Gn), len(Gn) + len(Gn_median_set)),
  374. [1 / len(Gn_median_set)] * len(Gn_median_set),
  375. Kmatrix_median, withterm3=False))
  376. dis_mat_median = np.zeros((len(Gn) + 1, len(Gn) + 1))
  377. for i in range(len(Gn)):
  378. for j in range(i, len(Gn)):
  379. dis_mat_median[i, j] = dis_mat[i, j]
  380. dis_mat_median[j, i] = dis_mat_median[i, j]
  381. for i in range(len(Gn)):
  382. dis_mat_median[i, -1] = dis_k_median_list[i]
  383. dis_mat_median[-1, i] = dis_k_median_list[i]
  384. # visualization.
  385. # visualize_graph_dataset('graph-kernel', 'tsne', Gn)
  386. # visualize_graph_dataset('graph-kernel', 'tsne', draw_figure,
  387. # draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median)
  388. visualize_graph_dataset('graph-kernel', 'tsne', draw_figure,
  389. draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median,
  390. median_set=median_set)
  391. def visualize_distances_in_ged_letter_h():
  392. from fitDistance import compute_geds
  393. from preimage.test_k_closest_graphs import reform_attributes
  394. ds = {'dataset': 'cpp_ext/data/collections/Letter.xml',
  395. 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb
  396. Gn_original, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir'])
  397. # Gn = Gn[0:50]
  398. # compute distance matrix
  399. # median_set = [22, 29, 54, 74]
  400. gkernel = 'structuralspkernel'
  401. fit_method = 'expert'
  402. ds_name = 'letter-h'
  403. fname_medians = fit_method + '.' + gkernel
  404. dir_output = 'results/xp_letter_h/'
  405. k = 150
  406. repeat = 0
  407. # edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297]
  408. edit_costs = [3, 3, 1, 3, 3, 1]
  409. # edit_costs = [7, 3, 5, 9, 2, 6]
  410. # get indices by classes.
  411. y_idx = get_same_item_indices(y_all)
  412. for i, (y, values) in enumerate(y_idx.items()):
  413. print('\ny =', y)
  414. Gn = [Gn_original[g].copy() for g in values]
  415. # add set median.
  416. fname_sm = dir_output + 'medians/' + y + '/set_median.k' + str(int(k)) \
  417. + '.y' + y + '.repeat' + str(repeat) + '.gxl'
  418. set_median = loadGXL(fname_sm)
  419. Gn.append(set_median)
  420. # add generalized median (estimated pre-image.)
  421. fname_gm = dir_output + 'medians/' + y + '/gen_median.k' + str(int(k)) \
  422. + '.y' + y + '.repeat' + str(repeat) + '.gxl'
  423. gen_median = loadGXL(fname_gm)
  424. Gn.append(gen_median)
  425. # compute/load ged matrix.
  426. # compute.
  427. algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'
  428. params_ged = {'dataset': 'Letter', 'lib': 'gedlibpy', 'cost': 'CONSTANT',
  429. 'method': 'IPFP', 'algo_options': algo_options,
  430. 'stabilizer': None, 'edit_cost_constant': edit_costs}
  431. for g in Gn:
  432. reform_attributes(g)
  433. _, ged_mat, _ = compute_geds(Gn, params_ged=params_ged, parallel=True)
  434. np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + y + '.with_medians.gm', ged_mat=ged_mat)
  435. # # load from file.
  436. # gmfile = np.load('dir_output + 'ged_mat.' + fname_medians + '.y' + y + '.with_medians.gm.npz')
  437. # ged_mat = gmfile['ged_mat']
  438. # # change medians.
  439. # algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1'
  440. # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP',
  441. # 'algo_options': algo_options, 'stabilizer': None,
  442. # 'edit_cost_constant': edit_costs}
  443. # for idx in tqdm(range(len(Gn) - 2), desc='computing GEDs', file=sys.stdout):
  444. # dis, _, _ = GED(Gn[idx], set_median, **params_ged)
  445. # ged_mat[idx, -2] = dis
  446. # ged_mat[-2, idx] = dis
  447. # dis, _, _ = GED(Gn[idx], gen_median, **params_ged)
  448. # ged_mat[idx, -1] = dis
  449. # ged_mat[-1, idx] = dis
  450. # np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + y + '.with_medians.gm',
  451. # ged_mat=ged_mat)
  452. # visualization.
  453. median_set = range(0, len(values))
  454. visualize_graph_dataset('ged', 'tsne', draw_figure,
  455. draw_params={'y_idx': y_idx}, dis_mat=ged_mat,
  456. median_set=median_set)
  457. if __name__ == '__main__':
  458. visualize_distances_in_kernel_letter_h()
  459. # visualize_distances_in_ged_letter_h()
  460. # visualize_distances_in_kernel_monoterpenoides()
  461. # visualize_distances_in_kernel_monoterpenoides()
  462. # visualize_distances_in_kernel()
  463. # visualize_distances_in_ged()
  464. #def draw_figure_dis_k(ax, Gn_embedded, y_idx=None, legend=False):
  465. # from matplotlib import colors as mcolors
  466. # colors = list(dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS))
  467. ## colors = ['#08306b', '#08519c', '#2171b5', '#4292c6', '#6baed6', '#9ecae1',
  468. ## '#c6dbef', '#deebf7']
  469. # for i, values in enumerate(y_idx.values()):
  470. # for item in values:
  471. ## ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c=colors[i]) # , c='b')
  472. # ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c='b')
  473. # h1 = ax.scatter(Gn_embedded[[12, 13, 22, 29], 0], Gn_embedded[[12, 13, 22, 29], 1], c='r')
  474. # h2 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='darkorchid') # \psi
  475. # h3 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='gold') # gen median
  476. # h4 = ax.scatter(Gn_embedded[-3, 0], Gn_embedded[-3, 1], c='r', marker='+') # set median
  477. # if legend:
  478. ## fig.subplots_adjust(bottom=0.17)
  479. # ax.legend([h1, h2, h3, h4], ['k clostest graphs', 'true median', 'gen median', 'set median'])
  480. ## fig.legend(handles, labels, loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6)
  481. ## plt.savefig('symbolic_and_non_comparison_vertical_short.eps', format='eps', dpi=300, transparent=True,
  482. ## bbox_inches='tight')
  483. ## plt.show()
  484. #def draw_figure_ged(ax, Gn_embedded, y_idx=None, legend=False):
  485. # from matplotlib import colors as mcolors
  486. # colors = list(dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS))
  487. ## colors = ['#08306b', '#08519c', '#2171b5', '#4292c6', '#6baed6', '#9ecae1',
  488. ## '#c6dbef', '#deebf7']
  489. # for i, values in enumerate(y_idx.values()):
  490. # for item in values:
  491. ## ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c=colors[i]) # , c='b')
  492. # ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c='b')
  493. # h1 = ax.scatter(Gn_embedded[[12, 13, 22, 29], 0], Gn_embedded[[12, 13, 22, 29], 1], c='r')
  494. ## h2 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='darkorchid') # \psi
  495. # h3 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='gold') # gen median
  496. # h4 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='r', marker='+') # set median
  497. # if legend:
  498. ## fig.subplots_adjust(bottom=0.17)
  499. # ax.legend([h1, h3, h4], ['k clostest graphs', 'gen median', 'set median'])
  500. ## fig.legend(handles, labels, loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6)
  501. ## plt.savefig('symbolic_and_non_comparison_vertical_short.eps', format='eps', dpi=300, transparent=True,
  502. ## bbox_inches='tight')
  503. ## plt.show()

A Python package for graph kernels, graph edit distances and graph pre-image problem.