You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_spkernel.py 9.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. import functools
  2. from libs import *
  3. from pygraph.kernels.spKernel import spkernel
  4. from pygraph.utils.kernels import deltakernel, kernelsum
  5. from sklearn.metrics.pairwise import rbf_kernel
  6. # dslist = [
  7. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb
  8. # # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  9. # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled
  10. # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb
  11. # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  12. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
  13. # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  14. # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb
  15. # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  16. # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  17. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb
  18. # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb
  19. # # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  20. # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  21. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  22. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  23. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  24. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  25. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  26. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  27. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  28. # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  29. # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
  30. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  31. # # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  32. # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  33. # # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  34. # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  35. # # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  36. # # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  37. # # # not working below
  38. # # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  39. # # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  40. # # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  41. # # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  42. # ]
  43. import ast
  44. ds = ast.literal_eval(sys.argv[1])
  45. estimator = spkernel
  46. mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)
  47. param_grid_precomputed = {
  48. 'node_kernels': [{
  49. 'symb': deltakernel,
  50. 'nsymb': rbf_kernel,
  51. 'mix': mixkernel
  52. }]
  53. }
  54. param_grid = [{
  55. 'C': np.logspace(-10, 10, num=41, base=10)
  56. }, {
  57. 'alpha': np.logspace(-10, 10, num=41, base=10)
  58. }]
  59. print()
  60. print(ds['name'])
  61. model_selection_for_precomputed_kernel(
  62. ds['dataset'],
  63. estimator,
  64. param_grid_precomputed,
  65. (param_grid[1]
  66. if ('task' in ds and ds['task'] == 'regression') else param_grid[0]),
  67. (ds['task'] if 'task' in ds else 'classification'),
  68. NUM_TRIALS=30,
  69. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  70. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  71. ds_name=ds['name'])
  72. # %lprun -f spkernel \
  73. # model_selection_for_precomputed_kernel( \
  74. # ds['dataset'], estimator, param_grid_precomputed, \
  75. # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \
  76. # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30, \
  77. # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \
  78. # extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  79. print()
  80. # import functools
  81. # from libs import *
  82. # from pygraph.kernels.spKernel import spkernel
  83. # from pygraph.utils.kernels import deltakernel, kernelsum
  84. # from sklearn.metrics.pairwise import rbf_kernel
  85. # dslist = [
  86. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb
  87. # # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  88. # # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled
  89. # # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb
  90. # # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  91. # # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
  92. # # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  93. # # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb
  94. # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  95. # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  96. # # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb
  97. # # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb
  98. # # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  99. # # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  100. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  101. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  102. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  103. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  104. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  105. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  106. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  107. # # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  108. # # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
  109. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  110. # # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  111. # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  112. # # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  113. # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  114. # # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  115. # # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  116. # # # not working below
  117. # # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  118. # # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  119. # # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  120. # # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  121. # ]
  122. # estimator = spkernel
  123. # mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)
  124. # param_grid_precomputed = {'node_kernels': [{'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}
  125. # param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)},
  126. # {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]
  127. # for ds in dslist:
  128. # print()
  129. # print(ds['name'])
  130. # model_selection_for_precomputed_kernel(
  131. # ds['dataset'], estimator, param_grid_precomputed,
  132. # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]),
  133. # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,
  134. # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  135. # extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  136. # ds_name=ds['name'])
  137. # # %lprun -f spkernel \
  138. # # model_selection_for_precomputed_kernel( \
  139. # # ds['dataset'], estimator, param_grid_precomputed, \
  140. # # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \
  141. # # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30, \
  142. # # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \
  143. # # extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  144. # print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.