|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- import functools
- from libs import *
- from pygraph.kernels.spKernel import spkernel
- from pygraph.utils.kernels import deltakernel, kernelsum
- from sklearn.metrics.pairwise import rbf_kernel
-
- # dslist = [
- # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb
- # # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
- # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled
- # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb
- # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
- # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
- # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
- # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb
- # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
- # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb
- # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
- # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
- # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
- # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
- # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
-
- # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
- # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
- # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
- # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
- # # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
- # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
- # # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
- # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
- # # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
- # # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
-
- # # # not working below
- # # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
- # # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
- # # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
- # # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
- # ]
-
- import ast
- ds = ast.literal_eval(sys.argv[1])
-
- estimator = spkernel
- mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)
- param_grid_precomputed = {
- 'node_kernels': [{
- 'symb': deltakernel,
- 'nsymb': rbf_kernel,
- 'mix': mixkernel
- }]
- }
- param_grid = [{
- 'C': np.logspace(-10, 10, num=41, base=10)
- }, {
- 'alpha': np.logspace(-10, 10, num=41, base=10)
- }]
-
- print()
- print(ds['name'])
- model_selection_for_precomputed_kernel(
- ds['dataset'],
- estimator,
- param_grid_precomputed,
- (param_grid[1]
- if ('task' in ds and ds['task'] == 'regression') else param_grid[0]),
- (ds['task'] if 'task' in ds else 'classification'),
- NUM_TRIALS=30,
- datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
- extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
- ds_name=ds['name'])
-
- # %lprun -f spkernel \
- # model_selection_for_precomputed_kernel( \
- # ds['dataset'], estimator, param_grid_precomputed, \
- # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \
- # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30, \
- # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \
- # extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
- print()
-
- # import functools
- # from libs import *
- # from pygraph.kernels.spKernel import spkernel
- # from pygraph.utils.kernels import deltakernel, kernelsum
- # from sklearn.metrics.pairwise import rbf_kernel
-
- # dslist = [
- # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb
- # # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
- # # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled
- # # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb
- # # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
- # # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
- # # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
- # # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb
- # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb
- # # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
- # # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
- # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
- # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
- # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
-
- # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
- # # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
- # # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
- # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
- # # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
- # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
- # # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
- # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
- # # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
- # # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
-
- # # # not working below
- # # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
- # # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
- # # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
- # # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
- # ]
- # estimator = spkernel
- # mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)
- # param_grid_precomputed = {'node_kernels': [{'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}
- # param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)},
- # {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]
-
- # for ds in dslist:
- # print()
- # print(ds['name'])
- # model_selection_for_precomputed_kernel(
- # ds['dataset'], estimator, param_grid_precomputed,
- # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]),
- # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,
- # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
- # extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
- # ds_name=ds['name'])
-
- # # %lprun -f spkernel \
- # # model_selection_for_precomputed_kernel( \
- # # ds['dataset'], estimator, param_grid_precomputed, \
- # # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \
- # # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30, \
- # # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \
- # # extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
- # print()
|