|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- # Results with minimal test RMSE for each kernel on dataset Asyclic
- All kernels are tested on dataset Asyclic, which consists of 185 molecules (graphs).
-
- The criteria used for prediction are SVM for classification and kernel Ridge regression for regression.
-
- For predition we randomly divide the data in train and test subset, where 90% of entire dataset is for training and rest for testing. 10 splits are performed. For each split, we first train on the train data, then evaluate the performance on the test set. We choose the optimal parameters for the test set and finally provide the corresponding performance. The final results correspond to the average of the performances on the test sets.
-
- ## Summary
-
- | Kernels | RMSE(℃) | STD(℃) | Parameter | k_time |
- |---------------|:-------:|:------:|-------------:|-------:|
- | Shortest path | 35.19 | 4.50 | - | 14.58" |
- | Marginalized | 18.02 | 6.29 | p_quit = 0.1 | 4'19" |
- | Path | 14.00 | 6.94 | - | 37.58" |
- | WL subtree | 7.55 | 2.33 | height = 1 | 0.84" |
- | Treelet | 8.31 | 3.38 | - | 0.50" |
- | Path up to d | 7.43 | 2.69 | depth = 2 | 0.52" |
-
- * RMSE stands for arithmetic mean of the root mean squared errors on all splits.
- * STD stands for standard deviation of the root mean squared errors on all splits.
- * Paremeter is the one with which the kenrel achieves the best results.
- * k_time is the time spent on building the kernel matrix.
- * The targets of training data are normalized before calculating *path kernel* and *treelet kernel*.
-
- ## Detailed results of each kernel
- In each table below:
- * The unit of the *RMSEs* and *stds* is *℃*, The unit of the *k_time* is *s*.
- * k_time is the time spent on building the kernel matrix.
-
- ### shortest path kernel
- ```
- RMSE_test std_test RMSE_train std_train k_time
- ----------- ---------- ------------ ----------- --------
- 35.192 4.49577 28.3604 1.35718 14.5768
- ```
-
- ### Marginalized kernel
- The table below shows the results of the marginalized under different termimation probability.
- ```
- p_quit RMSE_test std_test RMSE_train std_train k_time
- -------- ----------- ---------- ------------ ----------- --------
- 0.1 18.0243 6.29247 12.1863 7.03899 258.77
- 0.2 18.3376 5.85454 13.9554 7.54407 256.327
- 0.3 18.496 5.73492 13.9391 7.95812 255.614
- 0.4 19.4491 5.3713 16.2593 6.69358 254.897
- 0.5 19.7857 5.55054 17.0181 6.84437 256.757
- 0.6 20.1922 5.59122 17.6618 6.56718 256.557
- 0.7 21.6614 6.02685 20.5882 5.74601 254.953
- 0.8 22.996 6.08347 23.5943 3.80637 252.804
- 0.9 24.4241 4.95119 25.8082 3.31207 256.738
- ```
-
- ### Path kernel
- **The targets of training data are normalized before calculating the kernel.**
- ```
- RMSE_test std_test RMSE_train std_train k_time
- ----------- ---------- ------------ ----------- --------
- 14.0015 6.93602 3.76191 0.702594 37.5759
- ```
-
- ### Weisfeiler-Lehman subtree kernel
- The table below shows the results of the WL subtree under different subtree heights.
- ```
- height RMSE_test std_test RMSE_train std_train k_time
- -------- ----------- ---------- ------------ ----------- --------
- 0 15.6859 4.1392 17.6816 0.713183 0.360443
- 1 7.55046 2.33179 6.27001 0.654734 0.837389
- 2 9.72847 2.05767 4.45068 0.882129 1.25317
- 3 11.2961 2.79994 2.27059 0.481516 1.79971
- 4 12.8083 3.44694 1.07403 0.637823 2.35346
- 5 14.0179 3.67504 0.700602 0.57264 2.78285
- 6 14.9184 3.80535 0.691515 0.56462 3.20764
- 7 15.6295 3.86539 0.691516 0.56462 3.71648
- 8 16.2144 3.92876 0.691515 0.56462 3.99213
- 9 16.7257 3.9931 0.691515 0.56462 4.26315
- 10 17.1864 4.05672 0.691516 0.564621 5.00918
- ```
-
- ### Treelet kernel
- **The targets of training data are normalized before calculating the kernel.**
- ```
- RMSE_test std_test RMSE_train std_train k_time
- ----------- ---------- ------------ ----------- --------
- 8.3079 3.37838 2.90887 1.2679 0.500302
- ```
-
- ### Path kernel up to depth *d*
- The table below shows the results of the path kernel up to different depth *d*.
-
- The first table is the results using Tanimoto kernel, where **The targets of training data are normalized before calculating the kernel.**.
- ```
- depth rmse_test std_test rmse_train std_train k_time
- ------- ----------- ---------- ------------ ----------- ---------
- 0 41.6202 6.453 43.6169 2.13212 0.0904737
- 1 38.8446 6.44648 40.8329 3.44147 0.175414
- 2 35.2915 4.7813 35.7461 1.61134 0.344896
- 3 29.4845 3.90351 28.4646 3.00137 0.553939
- 4 22.6693 6.28053 19.2517 3.42893 0.770649
- 5 21.7956 5.5225 16.886 2.60519 1.01558
- 6 20.6049 5.49983 13.1097 2.58431 1.33302
- 7 20.3479 5.17631 12.0152 2.5928 1.60266
- 8 19.8228 5.13769 10.7981 2.13082 1.81218
- 9 19.8734 5.10369 10.7997 2.09549 2.21726
- 10 19.8708 5.09217 10.7787 2.10002 2.41006
- ```
-
- The second table is the results using MinMax kernel.
- ```
- depth rmse_test std_test rmse_train std_train k_time
- ------- ----------- ---------- ------------ ----------- --------
- 0 12.58 2.73235 12.1209 0.500467 0.377576
- 1 12.6215 2.18866 10.2243 0.734261 0.456332
- 2 7.42903 2.69395 2.71885 0.732922 0.585278
- 3 9.02468 2.50808 1.54 1.13813 0.706556
- 4 10.0811 3.6477 1.36029 1.42399 0.847957
- 5 11.3005 4.44163 1.08518 1.06206 1.00086
- 6 12.186 4.88816 1.06443 1.00191 1.19792
- 7 12.7534 5.14529 1.19912 1.34031 1.4372
- 8 13.0471 5.27184 1.35822 1.84315 1.68449
- 9 13.1789 5.27707 1.36002 1.84834 1.96545
- 10 13.2538 5.26425 1.36208 1.85426 2.24943
- ```
|