You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

treeletKernel.py 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. import sys
  2. import pathlib
  3. sys.path.insert(0, "../")
  4. import time
  5. from collections import Counter
  6. from itertools import chain
  7. import networkx as nx
  8. import numpy as np
  9. def treeletkernel(*args, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  10. """Calculate treelet graph kernels between graphs.
  11. Parameters
  12. ----------
  13. Gn : List of NetworkX graph
  14. List of graphs between which the kernels are calculated.
  15. /
  16. G1, G2 : NetworkX graphs
  17. 2 graphs between which the kernel is calculated.
  18. node_label : string
  19. node attribute used as label. The default node label is atom.
  20. edge_label : string
  21. edge attribute used as label. The default edge label is bond_type.
  22. labeled : boolean
  23. Whether the graphs are labeled. The default is True.
  24. Return
  25. ------
  26. Kmatrix/kernel : Numpy matrix/float
  27. Kernel matrix, each element of which is the treelet kernel between 2 praphs. / Treelet kernel between 2 graphs.
  28. """
  29. if len(args) == 1: # for a list of graphs
  30. Gn = args[0]
  31. Kmatrix = np.zeros((len(Gn), len(Gn)))
  32. start_time = time.time()
  33. # get all canonical keys of all graphs before calculating kernels to save time, but this may cost a lot of memory for large dataset.
  34. canonkeys = [ get_canonkeys(Gn[i], node_label = node_label, edge_label = edge_label, labeled = labeled) \
  35. for i in range(0, len(Gn)) ]
  36. for i in range(0, len(Gn)):
  37. for j in range(i, len(Gn)):
  38. Kmatrix[i][j] = _treeletkernel_do(canonkeys[i], canonkeys[j], node_label = node_label, edge_label = edge_label, labeled = labeled)
  39. Kmatrix[j][i] = Kmatrix[i][j]
  40. run_time = time.time() - start_time
  41. print("\n --- treelet kernel matrix of size %d built in %s seconds ---" % (len(Gn), run_time))
  42. return Kmatrix, run_time
  43. else: # for only 2 graphs
  44. start_time = time.time()
  45. canonkey1 = get_canonkeys(args[0], node_label = node_label, edge_label = edge_label, labeled = labeled)
  46. canonkey2 = get_canonkeys(args[1], node_label = node_label, edge_label = edge_label, labeled = labeled)
  47. kernel = _treeletkernel_do(canonkey1, canonkey2, node_label = node_label, edge_label = edge_label, labeled = labeled)
  48. run_time = time.time() - start_time
  49. print("\n --- treelet kernel built in %s seconds ---" % (run_time))
  50. return kernel, run_time
  51. def _treeletkernel_do(canonkey1, canonkey2, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  52. """Calculate treelet graph kernel between 2 graphs.
  53. Parameters
  54. ----------
  55. canonkey1, canonkey2 : list
  56. List of canonical keys in 2 graphs, where each key is represented by a string.
  57. node_label : string
  58. Node attribute used as label. The default node label is atom.
  59. edge_label : string
  60. Edge attribute used as label. The default edge label is bond_type.
  61. labeled : boolean
  62. Whether the graphs are labeled. The default is True.
  63. Return
  64. ------
  65. kernel : float
  66. Treelet Kernel between 2 graphs.
  67. """
  68. keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
  69. vector1 = np.array([ (canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys ])
  70. vector2 = np.array([ (canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys ])
  71. kernel = np.sum(np.exp(- np.square(vector1 - vector2) / 2))
  72. return kernel
  73. def get_canonkeys(G, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  74. """Generate canonical keys of all treelets in a graph.
  75. Parameters
  76. ----------
  77. G : NetworkX graphs
  78. The graph in which keys are generated.
  79. node_label : string
  80. node attribute used as label. The default node label is atom.
  81. edge_label : string
  82. edge attribute used as label. The default edge label is bond_type.
  83. labeled : boolean
  84. Whether the graphs are labeled. The default is True.
  85. Return
  86. ------
  87. canonkey/canonkey_l : dict
  88. For unlabeled graphs, canonkey is a dictionary which records amount of every tree pattern. For labeled graphs, canonkey_l is one which keeps track of amount of every treelet.
  89. References
  90. ----------
  91. [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
  92. """
  93. patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
  94. canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
  95. ### structural analysis ###
  96. ### In this section, a list of patterns is generated for each graphlet, where every pattern is represented by nodes ordered by
  97. ### Morgan's extended labeling.
  98. # linear patterns
  99. patterns['0'] = G.nodes()
  100. canonkey['0'] = nx.number_of_nodes(G)
  101. for i in range(1, 6):
  102. patterns[str(i)] = find_all_paths(G, i)
  103. canonkey[str(i)] = len(patterns[str(i)])
  104. # n-star patterns
  105. patterns['3star'] = [ [node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3 ]
  106. patterns['4star'] = [ [node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4 ]
  107. patterns['5star'] = [ [node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5 ]
  108. # n-star patterns
  109. canonkey['6'] = len(patterns['3star'])
  110. canonkey['8'] = len(patterns['4star'])
  111. canonkey['d'] = len(patterns['5star'])
  112. # pattern 7
  113. patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
  114. for pattern in patterns['3star']:
  115. for i in range(1, len(pattern)): # for each neighbor of node 0
  116. if G.degree(pattern[i]) >= 2:
  117. pattern_t = pattern[:]
  118. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] # set the node with degree >= 2 as the 4th node
  119. for neighborx in G[pattern[i]]:
  120. if neighborx != pattern[0]:
  121. new_pattern = pattern_t + [ neighborx ]
  122. patterns['7'].append(new_pattern)
  123. canonkey['7'] = len(patterns['7'])
  124. # pattern 11
  125. patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
  126. for pattern in patterns['4star']:
  127. for i in range(1, len(pattern)):
  128. if G.degree(pattern[i]) >= 2:
  129. pattern_t = pattern[:]
  130. pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
  131. for neighborx in G[pattern[i]]:
  132. if neighborx != pattern[0]:
  133. new_pattern = pattern_t + [ neighborx ]
  134. patterns['11'].append(new_pattern)
  135. canonkey['b'] = len(patterns['11'])
  136. # pattern 12
  137. patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
  138. rootlist = [] # a list of root nodes, whose extended labels are 3
  139. for pattern in patterns['3star']:
  140. if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
  141. rootlist.append(pattern[0])
  142. for i in range(1, len(pattern)):
  143. if G.degree(pattern[i]) >= 3:
  144. rootlist.append(pattern[i])
  145. pattern_t = pattern[:]
  146. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  147. for neighborx1 in G[pattern[i]]:
  148. if neighborx1 != pattern[0]:
  149. for neighborx2 in G[pattern[i]]:
  150. if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
  151. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  152. # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
  153. patterns['12'].append(new_pattern)
  154. canonkey['c'] = int(len(patterns['12']) / 2)
  155. # pattern 9
  156. patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
  157. for pattern in patterns['3star']:
  158. for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
  159. for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]:
  160. pattern_t = pattern[:]
  161. # move nodes with extended labels 4 to specific position to correspond to their children
  162. pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
  163. pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
  164. for neighborx1 in G[pairs[0]]:
  165. if neighborx1 != pattern[0]:
  166. for neighborx2 in G[pairs[1]]:
  167. if neighborx2 != pattern[0]:
  168. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  169. patterns['9'].append(new_pattern)
  170. canonkey['9'] = len(patterns['9'])
  171. # pattern 10
  172. patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
  173. for pattern in patterns['3star']:
  174. for i in range(1, len(pattern)):
  175. if G.degree(pattern[i]) >= 2:
  176. for neighborx in G[pattern[i]]:
  177. if neighborx != pattern[0] and G.degree(neighborx) >= 2:
  178. pattern_t = pattern[:]
  179. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  180. new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
  181. patterns['10'].extend(new_patterns)
  182. canonkey['a'] = len(patterns['10'])
  183. ### labeling information ###
  184. ### In this section, a list of canonical keys is generated for every pattern obtained in the structural analysis
  185. ### section above, which is a string corresponding to a unique treelet. A dictionary is built to keep track of
  186. ### the amount of every treelet.
  187. if labeled == True:
  188. canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
  189. # linear patterns
  190. canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values()))
  191. for key in canonkey_t:
  192. canonkey_l['0' + key] = canonkey_t[key]
  193. for i in range(1, 6):
  194. treelet = []
  195. for pattern in patterns[str(i)]:
  196. canonlist = list(chain.from_iterable((G.node[node][node_label], \
  197. G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1])))
  198. canonlist.append(G.node[pattern[-1]][node_label])
  199. canonkey_t = ''.join(canonlist)
  200. canonkey_t = canonkey_t if canonkey_t < canonkey_t[::-1] else canonkey_t[::-1]
  201. treelet.append(str(i) + canonkey_t)
  202. canonkey_l.update(Counter(treelet))
  203. # n-star patterns
  204. for i in range(3, 6):
  205. treelet = []
  206. for pattern in patterns[str(i) + 'star']:
  207. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:] ]
  208. canonlist.sort()
  209. canonkey_t = ('d' if i == 5 else str(i * 2)) + G.node[pattern[0]][node_label] + ''.join(canonlist)
  210. treelet.append(canonkey_t)
  211. canonkey_l.update(Counter(treelet))
  212. # pattern 7
  213. treelet = []
  214. for pattern in patterns['7']:
  215. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  216. canonlist.sort()
  217. canonkey_t = '7' + G.node[pattern[0]][node_label] + ''.join(canonlist) \
  218. + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \
  219. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label]
  220. treelet.append(canonkey_t)
  221. canonkey_l.update(Counter(treelet))
  222. # pattern 11
  223. treelet = []
  224. for pattern in patterns['11']:
  225. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:4] ]
  226. canonlist.sort()
  227. canonkey_t = 'b' + G.node[pattern[0]][node_label] + ''.join(canonlist) \
  228. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[0]][edge_label] \
  229. + G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label]
  230. treelet.append(canonkey_t)
  231. canonkey_l.update(Counter(treelet))
  232. # pattern 10
  233. treelet = []
  234. for pattern in patterns['10']:
  235. canonkey4 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label]
  236. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  237. canonlist.sort()
  238. canonkey0 = ''.join(canonlist)
  239. canonkey_t = 'a' + G.node[pattern[3]][node_label] \
  240. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] \
  241. + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \
  242. + canonkey4 + canonkey0
  243. treelet.append(canonkey_t)
  244. canonkey_l.update(Counter(treelet))
  245. # pattern 12
  246. treelet = []
  247. for pattern in patterns['12']:
  248. canonlist0 = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  249. canonlist0.sort()
  250. canonlist3 = [ G.node[leaf][node_label] + G[leaf][pattern[3]][edge_label] for leaf in pattern[4:6] ]
  251. canonlist3.sort()
  252. # 2 possible key can be generated from 2 nodes with extended label 3, select the one with lower lexicographic order.
  253. canonkey_t1 = 'c' + G.node[pattern[0]][node_label] \
  254. + ''.join(canonlist0) \
  255. + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \
  256. + ''.join(canonlist3)
  257. canonkey_t2 = 'c' + G.node[pattern[3]][node_label] \
  258. + ''.join(canonlist3) \
  259. + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \
  260. + ''.join(canonlist0)
  261. treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
  262. canonkey_l.update(Counter(treelet))
  263. # pattern 9
  264. treelet = []
  265. for pattern in patterns['9']:
  266. canonkey2 = G.node[pattern[4]][node_label] + G[pattern[4]][pattern[2]][edge_label]
  267. canonkey3 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[3]][edge_label]
  268. prekey2 = G.node[pattern[2]][node_label] + G[pattern[2]][pattern[0]][edge_label]
  269. prekey3 = G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label]
  270. if prekey2 + canonkey2 < prekey3 + canonkey3:
  271. canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \
  272. + prekey2 + prekey3 + canonkey2 + canonkey3
  273. else:
  274. canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \
  275. + prekey3 + prekey2 + canonkey3 + canonkey2
  276. treelet.append('9' + G.node[pattern[0]][node_label] + canonkey_t)
  277. canonkey_l.update(Counter(treelet))
  278. return canonkey_l
  279. return canonkey
  280. def find_paths(G, source_node, length):
  281. """Find all paths with a certain length those start from a source node. A recursive depth first search is applied.
  282. Parameters
  283. ----------
  284. G : NetworkX graphs
  285. The graph in which paths are searched.
  286. source_node : integer
  287. The number of the node from where all paths start.
  288. length : integer
  289. The length of paths.
  290. Return
  291. ------
  292. path : list of list
  293. List of paths retrieved, where each path is represented by a list of nodes.
  294. """
  295. if length == 0:
  296. return [[source_node]]
  297. path = [ [source_node] + path for neighbor in G[source_node] \
  298. for path in find_paths(G, neighbor, length - 1) if source_node not in path ]
  299. return path
  300. def find_all_paths(G, length):
  301. """Find all paths with a certain length in a graph. A recursive depth first search is applied.
  302. Parameters
  303. ----------
  304. G : NetworkX graphs
  305. The graph in which paths are searched.
  306. length : integer
  307. The length of paths.
  308. Return
  309. ------
  310. path : list of list
  311. List of paths retrieved, where each path is represented by a list of nodes.
  312. """
  313. all_paths = []
  314. for node in G:
  315. all_paths.extend(find_paths(G, node, length))
  316. all_paths_r = [ path[::-1] for path in all_paths ]
  317. # For each path, two presentation are retrieved from its two extremities. Remove one of them.
  318. for idx, path in enumerate(all_paths[:-1]):
  319. for path2 in all_paths_r[idx+1::]:
  320. if path == path2:
  321. all_paths[idx] = []
  322. break
  323. return list(filter(lambda a: a != [], all_paths))

A Python package for graph kernels, graph edit distances and graph pre-image problem.