|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jan 14 15:39:29 2020
-
- @author: ljia
- """
- import multiprocessing
- import functools
- from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
- from gklearn.preimage.utils import generate_median_preimages_by_class
- from gklearn.utils import compute_gram_matrices_by_class
-
-
- def xp_median_preimage_13_1():
- """xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_13_2():
- """xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' #
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5: #
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_12_1():
- """xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
- """
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 0, 1, 1, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_12_2():
- """xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
- """
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 1, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_12_3():
- """xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
- """
- from gklearn.utils.kernels import gaussiankernel
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(gaussiankernel, gamma=None) # @todo
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_12_4():
- """xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
- """
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 14,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_12_5():
- """xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
- """
- # set parameters.
- ds_name = 'PAH' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 0, 1, 1, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/' #
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: #
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_1():
- """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_2():
- """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 9, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_3():
- """xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
- kernel_options = {'name': 'Treelet', #
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_9_4():
- """xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
- """
- # set parameters.
- ds_name = 'MAO' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 6,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
- irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_1():
- """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_2():
- """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 7, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_3():
- """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
- kernel_options = {'name': 'Treelet',
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_8_4():
- """xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
- """
- # set parameters.
- ds_name = 'Monoterpenoides' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 4,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_1():
- """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_2():
- """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'PathUpToH',
- 'depth': 2, #
- 'k_func': 'MinMax', #
- 'compute_method': 'trie',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_3():
- """xp 7_3: MUTAG, Treelet, using CONSTANT.
- """
- from gklearn.utils.kernels import polynomialkernel
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
- kernel_options = {'name': 'Treelet',
- 'sub_kernel': pkernel,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_7_4():
- """xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
- """
- # set parameters.
- ds_name = 'MUTAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [4, 4, 2, 1, 1, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100, #
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- kernel_options = {'name': 'WeisfeilerLehman',
- 'height': 1,
- 'base_kernel': 'subtree',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'CONSTANT', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_6_1():
- """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COIL-RAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_6_2():
- """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COIL-RAG' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 1], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC', #
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_5_1():
- """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'FRANKENSTEIN' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_4_1():
- """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- """
- # set parameters.
- ds_name = 'COLORS-3' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3, 0], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'NON_SYMBOLIC',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_3_2():
- """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'Fingerprint' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_3_1():
- """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'Fingerprint' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
- edge_required = False #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_2_1():
- """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- """
- # set parameters.
- ds_name = 'COIL-DEL' #
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [3, 3, 1, 3, 3],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.node_attrs/'
- irrelevant_labels = {'edge_labels': ['valence']}
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # # compute gram matrices for each class a priori.
- # print('Compute gram matrices for each class a priori.')
- # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
- # generate preimages.
- for fit_method in ['k-graphs'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
-
-
- def xp_median_preimage_1_1():
- """xp 1_1: Letter-high, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-high'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
-
-
- def xp_median_preimage_1_2():
- """xp 1_2: Letter-high, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-high'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_10_1():
- """xp 10_1: Letter-med, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-med'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
-
-
- def xp_median_preimage_10_2():
- """xp 10_2: Letter-med, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-med'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- def xp_median_preimage_11_1():
- """xp 11_1: Letter-low, StructuralSP.
- """
- # set parameters.
- ds_name = 'Letter-low'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'StructuralSP',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'edge_kernels': sub_kernels,
- 'compute_method': 'naive',
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
-
-
- def xp_median_preimage_11_2():
- """xp 11_2: Letter-low, ShortestPath.
- """
- # set parameters.
- ds_name = 'Letter-low'
- mpg_options = {'fit_method': 'k-graphs',
- 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
- 'ds_name': ds_name,
- 'parallel': True, # False
- 'time_limit_in_sec': 0,
- 'max_itrs': 100,
- 'max_itrs_without_update': 3,
- 'epsilon_residual': 0.01,
- 'epsilon_ec': 0.1,
- 'verbose': 2}
- mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
- sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
- kernel_options = {'name': 'ShortestPath',
- 'edge_weight': None,
- 'node_kernels': sub_kernels,
- 'parallel': 'imap_unordered',
- # 'parallel': None,
- 'n_jobs': multiprocessing.cpu_count(),
- 'normalize': True,
- 'verbose': 2}
- ged_options = {'method': 'IPFP',
- 'initialization_method': 'RANDOM', # 'NODE'
- 'initial_solutions': 10, # 1
- 'edit_cost': 'LETTER2',
- 'attr_distance': 'euclidean',
- 'ratio_runs_from_initial_solutions': 1,
- 'threads': multiprocessing.cpu_count(),
- 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
- mge_options = {'init_type': 'MEDOID',
- 'random_inits': 10,
- 'time_limit': 600,
- 'verbose': 2,
- 'refine': False}
- save_results = True
- dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
- irrelevant_labels = None #
- edge_required = True #
-
- # print settings.
- print('parameters:')
- print('dataset name:', ds_name)
- print('mpg_options:', mpg_options)
- print('kernel_options:', kernel_options)
- print('ged_options:', ged_options)
- print('mge_options:', mge_options)
- print('save_results:', save_results)
- print('irrelevant_labels:', irrelevant_labels)
- print()
-
- # generate preimages.
- for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
- print('\n-------------------------------------')
- print('fit method:', fit_method, '\n')
- mpg_options['fit_method'] = fit_method
- generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
-
-
- if __name__ == "__main__":
-
- # #### xp 1_1: Letter-high, StructuralSP.
- # # xp_median_preimage_1_1()
-
- # #### xp 1_2: Letter-high, ShortestPath.
- # # xp_median_preimage_1_2()
-
- # #### xp 10_1: Letter-med, StructuralSP.
- # # xp_median_preimage_10_1()
-
- # #### xp 10_2: Letter-med, ShortestPath.
- # # xp_median_preimage_10_2()
-
- # #### xp 11_1: Letter-low, StructuralSP.
- # # xp_median_preimage_11_1()
-
- # #### xp 11_2: Letter-low, ShortestPath.
- # # xp_median_preimage_11_2()
- #
- # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- # # xp_median_preimage_2_1()
- #
- # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- # # xp_median_preimage_3_1()
-
- # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- # xp_median_preimage_3_2()
-
- # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_4_1()
- #
- # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_5_1()
- #
- # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- # # xp_median_preimage_6_1()
-
- # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_6_2()
-
- # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- # # xp_median_preimage_7_1()
-
- # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
- # # xp_median_preimage_7_2()
-
- # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
- # # xp_median_preimage_7_3()
-
- # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
- # xp_median_preimage_7_4()
- #
- # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- # # xp_median_preimage_8_1()
-
- # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
- # # xp_median_preimage_8_2()
-
- # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
- # # xp_median_preimage_8_3()
-
- # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
- # xp_median_preimage_8_4()
-
- # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- # xp_median_preimage_9_1()
-
- # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
- # xp_median_preimage_9_2()
-
- # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
- # xp_median_preimage_9_3()
-
- # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
- # xp_median_preimage_9_4()
-
- #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
- # xp_median_preimage_12_1()
-
- #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
- # xp_median_preimage_12_2()
-
- #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
- # xp_median_preimage_12_3()
-
- #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
- # xp_median_preimage_12_4()
-
- #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
- # xp_median_preimage_12_5()
-
- #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
- xp_median_preimage_13_1()
-
- #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_13_2()
-
-
-
-
- # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
- # xp_median_preimage_7_4()
-
- # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
- # xp_median_preimage_8_4()
-
- # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
- # xp_median_preimage_9_4()
-
- # #### xp 10_1: Letter-med, StructuralSP.
- # xp_median_preimage_10_1()
-
- # #### xp 10_2: Letter-med, ShortestPath.
- # xp_median_preimage_10_2()
-
- # #### xp 11_1: Letter-low, StructuralSP.
- # xp_median_preimage_11_1()
-
- # #### xp 11_2: Letter-low, ShortestPath.
- # xp_median_preimage_11_2()
- #
- # #### xp 1_1: Letter-high, StructuralSP.
- # xp_median_preimage_1_1()
-
- # #### xp 1_2: Letter-high, ShortestPath.
- # xp_median_preimage_1_2()
-
- # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
- # xp_median_preimage_3_1()
- #
- # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_6_1()
-
- # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
- # xp_median_preimage_6_2()
- #
- # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
- # xp_median_preimage_3_2()
-
- #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
- # xp_median_preimage_7_1()
-
- # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
- # xp_median_preimage_8_1()
-
- # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
- # xp_median_preimage_9_1()
-
- # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
- # xp_median_preimage_2_1()
-
- #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_5_1()
-
- #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
- # xp_median_preimage_4_1()
|