You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

xp_median_preimage.py 80 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 14 15:39:29 2020
  5. @author: ljia
  6. """
  7. import multiprocessing
  8. import functools
  9. from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  10. from gklearn.preimage.utils import generate_median_preimages_by_class
  11. from gklearn.utils import compute_gram_matrices_by_class
  12. def xp_median_preimage_13_1():
  13. """xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  14. """
  15. # set parameters.
  16. ds_name = 'PAH' #
  17. mpg_options = {'fit_method': 'k-graphs',
  18. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  19. 'ds_name': ds_name,
  20. 'parallel': True, # False
  21. 'time_limit_in_sec': 0,
  22. 'max_itrs': 100, #
  23. 'max_itrs_without_update': 3,
  24. 'epsilon_residual': 0.01,
  25. 'epsilon_ec': 0.1,
  26. 'verbose': 2}
  27. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  28. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  29. kernel_options = {'name': 'StructuralSP',
  30. 'edge_weight': None,
  31. 'node_kernels': sub_kernels,
  32. 'edge_kernels': sub_kernels,
  33. 'compute_method': 'naive',
  34. 'parallel': 'imap_unordered',
  35. # 'parallel': None,
  36. 'n_jobs': multiprocessing.cpu_count(),
  37. 'normalize': True,
  38. 'verbose': 2}
  39. ged_options = {'method': 'IPFP',
  40. 'initialization_method': 'RANDOM', # 'NODE'
  41. 'initial_solutions': 10, # 1
  42. 'edit_cost': 'NON_SYMBOLIC', #
  43. 'attr_distance': 'euclidean',
  44. 'ratio_runs_from_initial_solutions': 1,
  45. 'threads': multiprocessing.cpu_count(),
  46. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  47. mge_options = {'init_type': 'MEDOID',
  48. 'random_inits': 10,
  49. 'time_limit': 600,
  50. 'verbose': 2,
  51. 'refine': False}
  52. save_results = True
  53. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  54. irrelevant_labels = None #
  55. edge_required = False #
  56. # print settings.
  57. print('parameters:')
  58. print('dataset name:', ds_name)
  59. print('mpg_options:', mpg_options)
  60. print('kernel_options:', kernel_options)
  61. print('ged_options:', ged_options)
  62. print('mge_options:', mge_options)
  63. print('save_results:', save_results)
  64. print('irrelevant_labels:', irrelevant_labels)
  65. print()
  66. # generate preimages.
  67. for fit_method in ['k-graphs'] + ['random'] * 5:
  68. print('\n-------------------------------------')
  69. print('fit method:', fit_method, '\n')
  70. mpg_options['fit_method'] = fit_method
  71. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  72. def xp_median_preimage_13_2():
  73. """xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  74. """
  75. # set parameters.
  76. ds_name = 'PAH' #
  77. mpg_options = {'fit_method': 'k-graphs',
  78. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  79. 'ds_name': ds_name,
  80. 'parallel': True, # False
  81. 'time_limit_in_sec': 0,
  82. 'max_itrs': 100,
  83. 'max_itrs_without_update': 3,
  84. 'epsilon_residual': 0.01,
  85. 'epsilon_ec': 0.1,
  86. 'verbose': 2}
  87. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  88. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  89. kernel_options = {'name': 'ShortestPath',
  90. 'edge_weight': None,
  91. 'node_kernels': sub_kernels,
  92. 'parallel': 'imap_unordered',
  93. # 'parallel': None,
  94. 'n_jobs': multiprocessing.cpu_count(),
  95. 'normalize': True,
  96. 'verbose': 2}
  97. ged_options = {'method': 'IPFP',
  98. 'initialization_method': 'RANDOM', # 'NODE'
  99. 'initial_solutions': 10, # 1
  100. 'edit_cost': 'NON_SYMBOLIC', #
  101. 'attr_distance': 'euclidean',
  102. 'ratio_runs_from_initial_solutions': 1,
  103. 'threads': multiprocessing.cpu_count(),
  104. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  105. mge_options = {'init_type': 'MEDOID',
  106. 'random_inits': 10,
  107. 'time_limit': 600,
  108. 'verbose': 2,
  109. 'refine': False}
  110. save_results = True
  111. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' #
  112. irrelevant_labels = None #
  113. edge_required = True #
  114. # print settings.
  115. print('parameters:')
  116. print('dataset name:', ds_name)
  117. print('mpg_options:', mpg_options)
  118. print('kernel_options:', kernel_options)
  119. print('ged_options:', ged_options)
  120. print('mge_options:', mge_options)
  121. print('save_results:', save_results)
  122. print('irrelevant_labels:', irrelevant_labels)
  123. print()
  124. # generate preimages.
  125. for fit_method in ['k-graphs'] + ['random'] * 5: #
  126. print('\n-------------------------------------')
  127. print('fit method:', fit_method, '\n')
  128. mpg_options['fit_method'] = fit_method
  129. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  130. def xp_median_preimage_12_1():
  131. """xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  132. """
  133. # set parameters.
  134. ds_name = 'PAH' #
  135. mpg_options = {'fit_method': 'k-graphs',
  136. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  137. 'ds_name': ds_name,
  138. 'parallel': True, # False
  139. 'time_limit_in_sec': 0,
  140. 'max_itrs': 100, #
  141. 'max_itrs_without_update': 3,
  142. 'epsilon_residual': 0.01,
  143. 'epsilon_ec': 0.1,
  144. 'verbose': 2}
  145. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  146. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  147. kernel_options = {'name': 'StructuralSP',
  148. 'edge_weight': None,
  149. 'node_kernels': sub_kernels,
  150. 'edge_kernels': sub_kernels,
  151. 'compute_method': 'naive',
  152. 'parallel': 'imap_unordered',
  153. # 'parallel': None,
  154. 'n_jobs': multiprocessing.cpu_count(),
  155. 'normalize': True,
  156. 'verbose': 2}
  157. ged_options = {'method': 'IPFP',
  158. 'initialization_method': 'RANDOM', # 'NODE'
  159. 'initial_solutions': 10, # 1
  160. 'edit_cost': 'NON_SYMBOLIC', #
  161. 'attr_distance': 'euclidean',
  162. 'ratio_runs_from_initial_solutions': 1,
  163. 'threads': multiprocessing.cpu_count(),
  164. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  165. mge_options = {'init_type': 'MEDOID',
  166. 'random_inits': 10,
  167. 'time_limit': 600,
  168. 'verbose': 2,
  169. 'refine': False}
  170. save_results = True
  171. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  172. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  173. edge_required = False #
  174. # print settings.
  175. print('parameters:')
  176. print('dataset name:', ds_name)
  177. print('mpg_options:', mpg_options)
  178. print('kernel_options:', kernel_options)
  179. print('ged_options:', ged_options)
  180. print('mge_options:', mge_options)
  181. print('save_results:', save_results)
  182. print('irrelevant_labels:', irrelevant_labels)
  183. print()
  184. # generate preimages.
  185. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  186. print('\n-------------------------------------')
  187. print('fit method:', fit_method, '\n')
  188. mpg_options['fit_method'] = fit_method
  189. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  190. def xp_median_preimage_12_2():
  191. """xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  192. """
  193. # set parameters.
  194. ds_name = 'PAH' #
  195. mpg_options = {'fit_method': 'k-graphs',
  196. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  197. 'ds_name': ds_name,
  198. 'parallel': True, # False
  199. 'time_limit_in_sec': 0,
  200. 'max_itrs': 100, #
  201. 'max_itrs_without_update': 3,
  202. 'epsilon_residual': 0.01,
  203. 'epsilon_ec': 0.1,
  204. 'verbose': 2}
  205. kernel_options = {'name': 'PathUpToH',
  206. 'depth': 1, #
  207. 'k_func': 'MinMax', #
  208. 'compute_method': 'trie',
  209. 'parallel': 'imap_unordered',
  210. # 'parallel': None,
  211. 'n_jobs': multiprocessing.cpu_count(),
  212. 'normalize': True,
  213. 'verbose': 2}
  214. ged_options = {'method': 'IPFP',
  215. 'initialization_method': 'RANDOM', # 'NODE'
  216. 'initial_solutions': 10, # 1
  217. 'edit_cost': 'CONSTANT', #
  218. 'attr_distance': 'euclidean',
  219. 'ratio_runs_from_initial_solutions': 1,
  220. 'threads': multiprocessing.cpu_count(),
  221. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  222. mge_options = {'init_type': 'MEDOID',
  223. 'random_inits': 10,
  224. 'time_limit': 600,
  225. 'verbose': 2,
  226. 'refine': False}
  227. save_results = True
  228. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  229. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  230. edge_required = False #
  231. # print settings.
  232. print('parameters:')
  233. print('dataset name:', ds_name)
  234. print('mpg_options:', mpg_options)
  235. print('kernel_options:', kernel_options)
  236. print('ged_options:', ged_options)
  237. print('mge_options:', mge_options)
  238. print('save_results:', save_results)
  239. print('irrelevant_labels:', irrelevant_labels)
  240. print()
  241. # generate preimages.
  242. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  243. print('\n-------------------------------------')
  244. print('fit method:', fit_method, '\n')
  245. mpg_options['fit_method'] = fit_method
  246. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  247. def xp_median_preimage_12_3():
  248. """xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  249. """
  250. from gklearn.utils.kernels import gaussiankernel
  251. # set parameters.
  252. ds_name = 'PAH' #
  253. mpg_options = {'fit_method': 'k-graphs',
  254. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  255. 'ds_name': ds_name,
  256. 'parallel': True, # False
  257. 'time_limit_in_sec': 0,
  258. 'max_itrs': 100, #
  259. 'max_itrs_without_update': 3,
  260. 'epsilon_residual': 0.01,
  261. 'epsilon_ec': 0.1,
  262. 'verbose': 2}
  263. pkernel = functools.partial(gaussiankernel, gamma=None) # @todo
  264. kernel_options = {'name': 'Treelet', #
  265. 'sub_kernel': pkernel,
  266. 'parallel': 'imap_unordered',
  267. # 'parallel': None,
  268. 'n_jobs': multiprocessing.cpu_count(),
  269. 'normalize': True,
  270. 'verbose': 2}
  271. ged_options = {'method': 'IPFP',
  272. 'initialization_method': 'RANDOM', # 'NODE'
  273. 'initial_solutions': 10, # 1
  274. 'edit_cost': 'CONSTANT', #
  275. 'attr_distance': 'euclidean',
  276. 'ratio_runs_from_initial_solutions': 1,
  277. 'threads': multiprocessing.cpu_count(),
  278. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  279. mge_options = {'init_type': 'MEDOID',
  280. 'random_inits': 10,
  281. 'time_limit': 600,
  282. 'verbose': 2,
  283. 'refine': False}
  284. save_results = True
  285. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  286. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  287. edge_required = False #
  288. # print settings.
  289. print('parameters:')
  290. print('dataset name:', ds_name)
  291. print('mpg_options:', mpg_options)
  292. print('kernel_options:', kernel_options)
  293. print('ged_options:', ged_options)
  294. print('mge_options:', mge_options)
  295. print('save_results:', save_results)
  296. print('irrelevant_labels:', irrelevant_labels)
  297. print()
  298. # generate preimages.
  299. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  300. print('\n-------------------------------------')
  301. print('fit method:', fit_method, '\n')
  302. mpg_options['fit_method'] = fit_method
  303. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  304. def xp_median_preimage_12_4():
  305. """xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  306. """
  307. # set parameters.
  308. ds_name = 'PAH' #
  309. mpg_options = {'fit_method': 'k-graphs',
  310. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  311. 'ds_name': ds_name,
  312. 'parallel': True, # False
  313. 'time_limit_in_sec': 0,
  314. 'max_itrs': 100, #
  315. 'max_itrs_without_update': 3,
  316. 'epsilon_residual': 0.01,
  317. 'epsilon_ec': 0.1,
  318. 'verbose': 2}
  319. kernel_options = {'name': 'WeisfeilerLehman',
  320. 'height': 14,
  321. 'base_kernel': 'subtree',
  322. 'parallel': 'imap_unordered',
  323. # 'parallel': None,
  324. 'n_jobs': multiprocessing.cpu_count(),
  325. 'normalize': True,
  326. 'verbose': 2}
  327. ged_options = {'method': 'IPFP',
  328. 'initialization_method': 'RANDOM', # 'NODE'
  329. 'initial_solutions': 10, # 1
  330. 'edit_cost': 'CONSTANT', #
  331. 'attr_distance': 'euclidean',
  332. 'ratio_runs_from_initial_solutions': 1,
  333. 'threads': multiprocessing.cpu_count(),
  334. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  335. mge_options = {'init_type': 'MEDOID',
  336. 'random_inits': 10,
  337. 'time_limit': 600,
  338. 'verbose': 2,
  339. 'refine': False}
  340. save_results = True
  341. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/'
  342. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  343. edge_required = False #
  344. # print settings.
  345. print('parameters:')
  346. print('dataset name:', ds_name)
  347. print('mpg_options:', mpg_options)
  348. print('kernel_options:', kernel_options)
  349. print('ged_options:', ged_options)
  350. print('mge_options:', mge_options)
  351. print('save_results:', save_results)
  352. print('irrelevant_labels:', irrelevant_labels)
  353. print()
  354. # # compute gram matrices for each class a priori.
  355. # print('Compute gram matrices for each class a priori.')
  356. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  357. # generate preimages.
  358. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  359. print('\n-------------------------------------')
  360. print('fit method:', fit_method, '\n')
  361. mpg_options['fit_method'] = fit_method
  362. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  363. def xp_median_preimage_12_5():
  364. """xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  365. """
  366. # set parameters.
  367. ds_name = 'PAH' #
  368. mpg_options = {'fit_method': 'k-graphs',
  369. 'init_ecc': [4, 4, 0, 1, 1, 0], #
  370. 'ds_name': ds_name,
  371. 'parallel': True, # False
  372. 'time_limit_in_sec': 0,
  373. 'max_itrs': 100,
  374. 'max_itrs_without_update': 3,
  375. 'epsilon_residual': 0.01,
  376. 'epsilon_ec': 0.1,
  377. 'verbose': 2}
  378. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  379. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  380. kernel_options = {'name': 'ShortestPath',
  381. 'edge_weight': None,
  382. 'node_kernels': sub_kernels,
  383. 'parallel': 'imap_unordered',
  384. # 'parallel': None,
  385. 'n_jobs': multiprocessing.cpu_count(),
  386. 'normalize': True,
  387. 'verbose': 2}
  388. ged_options = {'method': 'IPFP',
  389. 'initialization_method': 'RANDOM', # 'NODE'
  390. 'initial_solutions': 10, # 1
  391. 'edit_cost': 'NON_SYMBOLIC', #
  392. 'attr_distance': 'euclidean',
  393. 'ratio_runs_from_initial_solutions': 1,
  394. 'threads': multiprocessing.cpu_count(),
  395. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  396. mge_options = {'init_type': 'MEDOID',
  397. 'random_inits': 10,
  398. 'time_limit': 600,
  399. 'verbose': 2,
  400. 'refine': False}
  401. save_results = True
  402. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.unlabeled/' #
  403. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  404. edge_required = True #
  405. # print settings.
  406. print('parameters:')
  407. print('dataset name:', ds_name)
  408. print('mpg_options:', mpg_options)
  409. print('kernel_options:', kernel_options)
  410. print('ged_options:', ged_options)
  411. print('mge_options:', mge_options)
  412. print('save_results:', save_results)
  413. print('irrelevant_labels:', irrelevant_labels)
  414. print()
  415. # generate preimages.
  416. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: #
  417. print('\n-------------------------------------')
  418. print('fit method:', fit_method, '\n')
  419. mpg_options['fit_method'] = fit_method
  420. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  421. def xp_median_preimage_9_1():
  422. """xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  423. """
  424. # set parameters.
  425. ds_name = 'MAO' #
  426. mpg_options = {'fit_method': 'k-graphs',
  427. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  428. 'ds_name': ds_name,
  429. 'parallel': True, # False
  430. 'time_limit_in_sec': 0,
  431. 'max_itrs': 100, #
  432. 'max_itrs_without_update': 3,
  433. 'epsilon_residual': 0.01,
  434. 'epsilon_ec': 0.1,
  435. 'verbose': 2}
  436. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  437. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  438. kernel_options = {'name': 'StructuralSP',
  439. 'edge_weight': None,
  440. 'node_kernels': sub_kernels,
  441. 'edge_kernels': sub_kernels,
  442. 'compute_method': 'naive',
  443. 'parallel': 'imap_unordered',
  444. # 'parallel': None,
  445. 'n_jobs': multiprocessing.cpu_count(),
  446. 'normalize': True,
  447. 'verbose': 2}
  448. ged_options = {'method': 'IPFP',
  449. 'initialization_method': 'RANDOM', # 'NODE'
  450. 'initial_solutions': 10, # 1
  451. 'edit_cost': 'CONSTANT', #
  452. 'attr_distance': 'euclidean',
  453. 'ratio_runs_from_initial_solutions': 1,
  454. 'threads': multiprocessing.cpu_count(),
  455. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  456. mge_options = {'init_type': 'MEDOID',
  457. 'random_inits': 10,
  458. 'time_limit': 600,
  459. 'verbose': 2,
  460. 'refine': False}
  461. save_results = True
  462. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  463. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  464. edge_required = False #
  465. # print settings.
  466. print('parameters:')
  467. print('dataset name:', ds_name)
  468. print('mpg_options:', mpg_options)
  469. print('kernel_options:', kernel_options)
  470. print('ged_options:', ged_options)
  471. print('mge_options:', mge_options)
  472. print('save_results:', save_results)
  473. print('irrelevant_labels:', irrelevant_labels)
  474. print()
  475. # generate preimages.
  476. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  477. print('\n-------------------------------------')
  478. print('fit method:', fit_method, '\n')
  479. mpg_options['fit_method'] = fit_method
  480. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  481. def xp_median_preimage_9_2():
  482. """xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  483. """
  484. # set parameters.
  485. ds_name = 'MAO' #
  486. mpg_options = {'fit_method': 'k-graphs',
  487. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  488. 'ds_name': ds_name,
  489. 'parallel': True, # False
  490. 'time_limit_in_sec': 0,
  491. 'max_itrs': 100, #
  492. 'max_itrs_without_update': 3,
  493. 'epsilon_residual': 0.01,
  494. 'epsilon_ec': 0.1,
  495. 'verbose': 2}
  496. kernel_options = {'name': 'PathUpToH',
  497. 'depth': 9, #
  498. 'k_func': 'MinMax', #
  499. 'compute_method': 'trie',
  500. 'parallel': 'imap_unordered',
  501. # 'parallel': None,
  502. 'n_jobs': multiprocessing.cpu_count(),
  503. 'normalize': True,
  504. 'verbose': 2}
  505. ged_options = {'method': 'IPFP',
  506. 'initialization_method': 'RANDOM', # 'NODE'
  507. 'initial_solutions': 10, # 1
  508. 'edit_cost': 'CONSTANT', #
  509. 'attr_distance': 'euclidean',
  510. 'ratio_runs_from_initial_solutions': 1,
  511. 'threads': multiprocessing.cpu_count(),
  512. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  513. mge_options = {'init_type': 'MEDOID',
  514. 'random_inits': 10,
  515. 'time_limit': 600,
  516. 'verbose': 2,
  517. 'refine': False}
  518. save_results = True
  519. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  520. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  521. edge_required = False #
  522. # print settings.
  523. print('parameters:')
  524. print('dataset name:', ds_name)
  525. print('mpg_options:', mpg_options)
  526. print('kernel_options:', kernel_options)
  527. print('ged_options:', ged_options)
  528. print('mge_options:', mge_options)
  529. print('save_results:', save_results)
  530. print('irrelevant_labels:', irrelevant_labels)
  531. print()
  532. # generate preimages.
  533. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  534. print('\n-------------------------------------')
  535. print('fit method:', fit_method, '\n')
  536. mpg_options['fit_method'] = fit_method
  537. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  538. def xp_median_preimage_9_3():
  539. """xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  540. """
  541. from gklearn.utils.kernels import polynomialkernel
  542. # set parameters.
  543. ds_name = 'MAO' #
  544. mpg_options = {'fit_method': 'k-graphs',
  545. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  546. 'ds_name': ds_name,
  547. 'parallel': True, # False
  548. 'time_limit_in_sec': 0,
  549. 'max_itrs': 100, #
  550. 'max_itrs_without_update': 3,
  551. 'epsilon_residual': 0.01,
  552. 'epsilon_ec': 0.1,
  553. 'verbose': 2}
  554. pkernel = functools.partial(polynomialkernel, d=4, c=1e+7)
  555. kernel_options = {'name': 'Treelet', #
  556. 'sub_kernel': pkernel,
  557. 'parallel': 'imap_unordered',
  558. # 'parallel': None,
  559. 'n_jobs': multiprocessing.cpu_count(),
  560. 'normalize': True,
  561. 'verbose': 2}
  562. ged_options = {'method': 'IPFP',
  563. 'initialization_method': 'RANDOM', # 'NODE'
  564. 'initial_solutions': 10, # 1
  565. 'edit_cost': 'CONSTANT', #
  566. 'attr_distance': 'euclidean',
  567. 'ratio_runs_from_initial_solutions': 1,
  568. 'threads': multiprocessing.cpu_count(),
  569. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  570. mge_options = {'init_type': 'MEDOID',
  571. 'random_inits': 10,
  572. 'time_limit': 600,
  573. 'verbose': 2,
  574. 'refine': False}
  575. save_results = True
  576. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  577. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  578. edge_required = False #
  579. # print settings.
  580. print('parameters:')
  581. print('dataset name:', ds_name)
  582. print('mpg_options:', mpg_options)
  583. print('kernel_options:', kernel_options)
  584. print('ged_options:', ged_options)
  585. print('mge_options:', mge_options)
  586. print('save_results:', save_results)
  587. print('irrelevant_labels:', irrelevant_labels)
  588. print()
  589. # generate preimages.
  590. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  591. print('\n-------------------------------------')
  592. print('fit method:', fit_method, '\n')
  593. mpg_options['fit_method'] = fit_method
  594. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  595. def xp_median_preimage_9_4():
  596. """xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  597. """
  598. # set parameters.
  599. ds_name = 'MAO' #
  600. mpg_options = {'fit_method': 'k-graphs',
  601. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  602. 'ds_name': ds_name,
  603. 'parallel': True, # False
  604. 'time_limit_in_sec': 0,
  605. 'max_itrs': 100, #
  606. 'max_itrs_without_update': 3,
  607. 'epsilon_residual': 0.01,
  608. 'epsilon_ec': 0.1,
  609. 'verbose': 2}
  610. kernel_options = {'name': 'WeisfeilerLehman',
  611. 'height': 6,
  612. 'base_kernel': 'subtree',
  613. 'parallel': 'imap_unordered',
  614. # 'parallel': None,
  615. 'n_jobs': multiprocessing.cpu_count(),
  616. 'normalize': True,
  617. 'verbose': 2}
  618. ged_options = {'method': 'IPFP',
  619. 'initialization_method': 'RANDOM', # 'NODE'
  620. 'initial_solutions': 10, # 1
  621. 'edit_cost': 'CONSTANT', #
  622. 'attr_distance': 'euclidean',
  623. 'ratio_runs_from_initial_solutions': 1,
  624. 'threads': multiprocessing.cpu_count(),
  625. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  626. mge_options = {'init_type': 'MEDOID',
  627. 'random_inits': 10,
  628. 'time_limit': 600,
  629. 'verbose': 2,
  630. 'refine': False}
  631. save_results = True
  632. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.symb/'
  633. irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} #
  634. edge_required = False #
  635. # print settings.
  636. print('parameters:')
  637. print('dataset name:', ds_name)
  638. print('mpg_options:', mpg_options)
  639. print('kernel_options:', kernel_options)
  640. print('ged_options:', ged_options)
  641. print('mge_options:', mge_options)
  642. print('save_results:', save_results)
  643. print('irrelevant_labels:', irrelevant_labels)
  644. print()
  645. # # compute gram matrices for each class a priori.
  646. # print('Compute gram matrices for each class a priori.')
  647. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  648. # generate preimages.
  649. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  650. print('\n-------------------------------------')
  651. print('fit method:', fit_method, '\n')
  652. mpg_options['fit_method'] = fit_method
  653. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  654. def xp_median_preimage_8_1():
  655. """xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  656. """
  657. # set parameters.
  658. ds_name = 'Monoterpenoides' #
  659. mpg_options = {'fit_method': 'k-graphs',
  660. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  661. 'ds_name': ds_name,
  662. 'parallel': True, # False
  663. 'time_limit_in_sec': 0,
  664. 'max_itrs': 100, #
  665. 'max_itrs_without_update': 3,
  666. 'epsilon_residual': 0.01,
  667. 'epsilon_ec': 0.1,
  668. 'verbose': 2}
  669. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  670. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  671. kernel_options = {'name': 'StructuralSP',
  672. 'edge_weight': None,
  673. 'node_kernels': sub_kernels,
  674. 'edge_kernels': sub_kernels,
  675. 'compute_method': 'naive',
  676. 'parallel': 'imap_unordered',
  677. # 'parallel': None,
  678. 'n_jobs': multiprocessing.cpu_count(),
  679. 'normalize': True,
  680. 'verbose': 2}
  681. ged_options = {'method': 'IPFP',
  682. 'initialization_method': 'RANDOM', # 'NODE'
  683. 'initial_solutions': 10, # 1
  684. 'edit_cost': 'CONSTANT', #
  685. 'attr_distance': 'euclidean',
  686. 'ratio_runs_from_initial_solutions': 1,
  687. 'threads': multiprocessing.cpu_count(),
  688. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  689. mge_options = {'init_type': 'MEDOID',
  690. 'random_inits': 10,
  691. 'time_limit': 600,
  692. 'verbose': 2,
  693. 'refine': False}
  694. save_results = True
  695. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  696. irrelevant_labels = None #
  697. edge_required = False #
  698. # print settings.
  699. print('parameters:')
  700. print('dataset name:', ds_name)
  701. print('mpg_options:', mpg_options)
  702. print('kernel_options:', kernel_options)
  703. print('ged_options:', ged_options)
  704. print('mge_options:', mge_options)
  705. print('save_results:', save_results)
  706. print('irrelevant_labels:', irrelevant_labels)
  707. print()
  708. # generate preimages.
  709. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  710. print('\n-------------------------------------')
  711. print('fit method:', fit_method, '\n')
  712. mpg_options['fit_method'] = fit_method
  713. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  714. def xp_median_preimage_8_2():
  715. """xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  716. """
  717. # set parameters.
  718. ds_name = 'Monoterpenoides' #
  719. mpg_options = {'fit_method': 'k-graphs',
  720. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  721. 'ds_name': ds_name,
  722. 'parallel': True, # False
  723. 'time_limit_in_sec': 0,
  724. 'max_itrs': 100, #
  725. 'max_itrs_without_update': 3,
  726. 'epsilon_residual': 0.01,
  727. 'epsilon_ec': 0.1,
  728. 'verbose': 2}
  729. kernel_options = {'name': 'PathUpToH',
  730. 'depth': 7, #
  731. 'k_func': 'MinMax', #
  732. 'compute_method': 'trie',
  733. 'parallel': 'imap_unordered',
  734. # 'parallel': None,
  735. 'n_jobs': multiprocessing.cpu_count(),
  736. 'normalize': True,
  737. 'verbose': 2}
  738. ged_options = {'method': 'IPFP',
  739. 'initialization_method': 'RANDOM', # 'NODE'
  740. 'initial_solutions': 10, # 1
  741. 'edit_cost': 'CONSTANT', #
  742. 'attr_distance': 'euclidean',
  743. 'ratio_runs_from_initial_solutions': 1,
  744. 'threads': multiprocessing.cpu_count(),
  745. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  746. mge_options = {'init_type': 'MEDOID',
  747. 'random_inits': 10,
  748. 'time_limit': 600,
  749. 'verbose': 2,
  750. 'refine': False}
  751. save_results = True
  752. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  753. irrelevant_labels = None #
  754. edge_required = False #
  755. # print settings.
  756. print('parameters:')
  757. print('dataset name:', ds_name)
  758. print('mpg_options:', mpg_options)
  759. print('kernel_options:', kernel_options)
  760. print('ged_options:', ged_options)
  761. print('mge_options:', mge_options)
  762. print('save_results:', save_results)
  763. print('irrelevant_labels:', irrelevant_labels)
  764. print()
  765. # generate preimages.
  766. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  767. print('\n-------------------------------------')
  768. print('fit method:', fit_method, '\n')
  769. mpg_options['fit_method'] = fit_method
  770. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  771. def xp_median_preimage_8_3():
  772. """xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  773. """
  774. from gklearn.utils.kernels import polynomialkernel
  775. # set parameters.
  776. ds_name = 'Monoterpenoides' #
  777. mpg_options = {'fit_method': 'k-graphs',
  778. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  779. 'ds_name': ds_name,
  780. 'parallel': True, # False
  781. 'time_limit_in_sec': 0,
  782. 'max_itrs': 100, #
  783. 'max_itrs_without_update': 3,
  784. 'epsilon_residual': 0.01,
  785. 'epsilon_ec': 0.1,
  786. 'verbose': 2}
  787. pkernel = functools.partial(polynomialkernel, d=2, c=1e+5)
  788. kernel_options = {'name': 'Treelet',
  789. 'sub_kernel': pkernel,
  790. 'parallel': 'imap_unordered',
  791. # 'parallel': None,
  792. 'n_jobs': multiprocessing.cpu_count(),
  793. 'normalize': True,
  794. 'verbose': 2}
  795. ged_options = {'method': 'IPFP',
  796. 'initialization_method': 'RANDOM', # 'NODE'
  797. 'initial_solutions': 10, # 1
  798. 'edit_cost': 'CONSTANT', #
  799. 'attr_distance': 'euclidean',
  800. 'ratio_runs_from_initial_solutions': 1,
  801. 'threads': multiprocessing.cpu_count(),
  802. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  803. mge_options = {'init_type': 'MEDOID',
  804. 'random_inits': 10,
  805. 'time_limit': 600,
  806. 'verbose': 2,
  807. 'refine': False}
  808. save_results = True
  809. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  810. irrelevant_labels = None #
  811. edge_required = False #
  812. # print settings.
  813. print('parameters:')
  814. print('dataset name:', ds_name)
  815. print('mpg_options:', mpg_options)
  816. print('kernel_options:', kernel_options)
  817. print('ged_options:', ged_options)
  818. print('mge_options:', mge_options)
  819. print('save_results:', save_results)
  820. print('irrelevant_labels:', irrelevant_labels)
  821. print()
  822. # generate preimages.
  823. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  824. print('\n-------------------------------------')
  825. print('fit method:', fit_method, '\n')
  826. mpg_options['fit_method'] = fit_method
  827. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  828. def xp_median_preimage_8_4():
  829. """xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  830. """
  831. # set parameters.
  832. ds_name = 'Monoterpenoides' #
  833. mpg_options = {'fit_method': 'k-graphs',
  834. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  835. 'ds_name': ds_name,
  836. 'parallel': True, # False
  837. 'time_limit_in_sec': 0,
  838. 'max_itrs': 100, #
  839. 'max_itrs_without_update': 3,
  840. 'epsilon_residual': 0.01,
  841. 'epsilon_ec': 0.1,
  842. 'verbose': 2}
  843. kernel_options = {'name': 'WeisfeilerLehman',
  844. 'height': 4,
  845. 'base_kernel': 'subtree',
  846. 'parallel': 'imap_unordered',
  847. # 'parallel': None,
  848. 'n_jobs': multiprocessing.cpu_count(),
  849. 'normalize': True,
  850. 'verbose': 2}
  851. ged_options = {'method': 'IPFP',
  852. 'initialization_method': 'RANDOM', # 'NODE'
  853. 'initial_solutions': 10, # 1
  854. 'edit_cost': 'CONSTANT', #
  855. 'attr_distance': 'euclidean',
  856. 'ratio_runs_from_initial_solutions': 1,
  857. 'threads': multiprocessing.cpu_count(),
  858. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  859. mge_options = {'init_type': 'MEDOID',
  860. 'random_inits': 10,
  861. 'time_limit': 600,
  862. 'verbose': 2,
  863. 'refine': False}
  864. save_results = True
  865. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  866. irrelevant_labels = None #
  867. edge_required = False #
  868. # print settings.
  869. print('parameters:')
  870. print('dataset name:', ds_name)
  871. print('mpg_options:', mpg_options)
  872. print('kernel_options:', kernel_options)
  873. print('ged_options:', ged_options)
  874. print('mge_options:', mge_options)
  875. print('save_results:', save_results)
  876. print('irrelevant_labels:', irrelevant_labels)
  877. print()
  878. # generate preimages.
  879. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  880. print('\n-------------------------------------')
  881. print('fit method:', fit_method, '\n')
  882. mpg_options['fit_method'] = fit_method
  883. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  884. def xp_median_preimage_7_1():
  885. """xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  886. """
  887. # set parameters.
  888. ds_name = 'MUTAG' #
  889. mpg_options = {'fit_method': 'k-graphs',
  890. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  891. 'ds_name': ds_name,
  892. 'parallel': True, # False
  893. 'time_limit_in_sec': 0,
  894. 'max_itrs': 100, #
  895. 'max_itrs_without_update': 3,
  896. 'epsilon_residual': 0.01,
  897. 'epsilon_ec': 0.1,
  898. 'verbose': 2}
  899. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  900. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  901. kernel_options = {'name': 'StructuralSP',
  902. 'edge_weight': None,
  903. 'node_kernels': sub_kernels,
  904. 'edge_kernels': sub_kernels,
  905. 'compute_method': 'naive',
  906. 'parallel': 'imap_unordered',
  907. # 'parallel': None,
  908. 'n_jobs': multiprocessing.cpu_count(),
  909. 'normalize': True,
  910. 'verbose': 2}
  911. ged_options = {'method': 'IPFP',
  912. 'initialization_method': 'RANDOM', # 'NODE'
  913. 'initial_solutions': 10, # 1
  914. 'edit_cost': 'CONSTANT', #
  915. 'attr_distance': 'euclidean',
  916. 'ratio_runs_from_initial_solutions': 1,
  917. 'threads': multiprocessing.cpu_count(),
  918. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  919. mge_options = {'init_type': 'MEDOID',
  920. 'random_inits': 10,
  921. 'time_limit': 600,
  922. 'verbose': 2,
  923. 'refine': False}
  924. save_results = True
  925. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  926. irrelevant_labels = None #
  927. edge_required = False #
  928. # print settings.
  929. print('parameters:')
  930. print('dataset name:', ds_name)
  931. print('mpg_options:', mpg_options)
  932. print('kernel_options:', kernel_options)
  933. print('ged_options:', ged_options)
  934. print('mge_options:', mge_options)
  935. print('save_results:', save_results)
  936. print('irrelevant_labels:', irrelevant_labels)
  937. print()
  938. # generate preimages.
  939. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  940. print('\n-------------------------------------')
  941. print('fit method:', fit_method, '\n')
  942. mpg_options['fit_method'] = fit_method
  943. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  944. def xp_median_preimage_7_2():
  945. """xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  946. """
  947. # set parameters.
  948. ds_name = 'MUTAG' #
  949. mpg_options = {'fit_method': 'k-graphs',
  950. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  951. 'ds_name': ds_name,
  952. 'parallel': True, # False
  953. 'time_limit_in_sec': 0,
  954. 'max_itrs': 100, #
  955. 'max_itrs_without_update': 3,
  956. 'epsilon_residual': 0.01,
  957. 'epsilon_ec': 0.1,
  958. 'verbose': 2}
  959. kernel_options = {'name': 'PathUpToH',
  960. 'depth': 2, #
  961. 'k_func': 'MinMax', #
  962. 'compute_method': 'trie',
  963. 'parallel': 'imap_unordered',
  964. # 'parallel': None,
  965. 'n_jobs': multiprocessing.cpu_count(),
  966. 'normalize': True,
  967. 'verbose': 2}
  968. ged_options = {'method': 'IPFP',
  969. 'initialization_method': 'RANDOM', # 'NODE'
  970. 'initial_solutions': 10, # 1
  971. 'edit_cost': 'CONSTANT', #
  972. 'attr_distance': 'euclidean',
  973. 'ratio_runs_from_initial_solutions': 1,
  974. 'threads': multiprocessing.cpu_count(),
  975. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  976. mge_options = {'init_type': 'MEDOID',
  977. 'random_inits': 10,
  978. 'time_limit': 600,
  979. 'verbose': 2,
  980. 'refine': False}
  981. save_results = True
  982. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  983. irrelevant_labels = None #
  984. edge_required = False #
  985. # print settings.
  986. print('parameters:')
  987. print('dataset name:', ds_name)
  988. print('mpg_options:', mpg_options)
  989. print('kernel_options:', kernel_options)
  990. print('ged_options:', ged_options)
  991. print('mge_options:', mge_options)
  992. print('save_results:', save_results)
  993. print('irrelevant_labels:', irrelevant_labels)
  994. print()
  995. # generate preimages.
  996. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  997. print('\n-------------------------------------')
  998. print('fit method:', fit_method, '\n')
  999. mpg_options['fit_method'] = fit_method
  1000. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1001. def xp_median_preimage_7_3():
  1002. """xp 7_3: MUTAG, Treelet, using CONSTANT.
  1003. """
  1004. from gklearn.utils.kernels import polynomialkernel
  1005. # set parameters.
  1006. ds_name = 'MUTAG' #
  1007. mpg_options = {'fit_method': 'k-graphs',
  1008. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1009. 'ds_name': ds_name,
  1010. 'parallel': True, # False
  1011. 'time_limit_in_sec': 0,
  1012. 'max_itrs': 100, #
  1013. 'max_itrs_without_update': 3,
  1014. 'epsilon_residual': 0.01,
  1015. 'epsilon_ec': 0.1,
  1016. 'verbose': 2}
  1017. pkernel = functools.partial(polynomialkernel, d=3, c=1e+8)
  1018. kernel_options = {'name': 'Treelet',
  1019. 'sub_kernel': pkernel,
  1020. 'parallel': 'imap_unordered',
  1021. # 'parallel': None,
  1022. 'n_jobs': multiprocessing.cpu_count(),
  1023. 'normalize': True,
  1024. 'verbose': 2}
  1025. ged_options = {'method': 'IPFP',
  1026. 'initialization_method': 'RANDOM', # 'NODE'
  1027. 'initial_solutions': 10, # 1
  1028. 'edit_cost': 'CONSTANT', #
  1029. 'attr_distance': 'euclidean',
  1030. 'ratio_runs_from_initial_solutions': 1,
  1031. 'threads': multiprocessing.cpu_count(),
  1032. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1033. mge_options = {'init_type': 'MEDOID',
  1034. 'random_inits': 10,
  1035. 'time_limit': 600,
  1036. 'verbose': 2,
  1037. 'refine': False}
  1038. save_results = True
  1039. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1040. irrelevant_labels = None #
  1041. edge_required = False #
  1042. # print settings.
  1043. print('parameters:')
  1044. print('dataset name:', ds_name)
  1045. print('mpg_options:', mpg_options)
  1046. print('kernel_options:', kernel_options)
  1047. print('ged_options:', ged_options)
  1048. print('mge_options:', mge_options)
  1049. print('save_results:', save_results)
  1050. print('irrelevant_labels:', irrelevant_labels)
  1051. print()
  1052. # generate preimages.
  1053. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1054. print('\n-------------------------------------')
  1055. print('fit method:', fit_method, '\n')
  1056. mpg_options['fit_method'] = fit_method
  1057. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1058. def xp_median_preimage_7_4():
  1059. """xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1060. """
  1061. # set parameters.
  1062. ds_name = 'MUTAG' #
  1063. mpg_options = {'fit_method': 'k-graphs',
  1064. 'init_ecc': [4, 4, 2, 1, 1, 1], #
  1065. 'ds_name': ds_name,
  1066. 'parallel': True, # False
  1067. 'time_limit_in_sec': 0,
  1068. 'max_itrs': 100, #
  1069. 'max_itrs_without_update': 3,
  1070. 'epsilon_residual': 0.01,
  1071. 'epsilon_ec': 0.1,
  1072. 'verbose': 2}
  1073. kernel_options = {'name': 'WeisfeilerLehman',
  1074. 'height': 1,
  1075. 'base_kernel': 'subtree',
  1076. 'parallel': 'imap_unordered',
  1077. # 'parallel': None,
  1078. 'n_jobs': multiprocessing.cpu_count(),
  1079. 'normalize': True,
  1080. 'verbose': 2}
  1081. ged_options = {'method': 'IPFP',
  1082. 'initialization_method': 'RANDOM', # 'NODE'
  1083. 'initial_solutions': 10, # 1
  1084. 'edit_cost': 'CONSTANT', #
  1085. 'attr_distance': 'euclidean',
  1086. 'ratio_runs_from_initial_solutions': 1,
  1087. 'threads': multiprocessing.cpu_count(),
  1088. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1089. mge_options = {'init_type': 'MEDOID',
  1090. 'random_inits': 10,
  1091. 'time_limit': 600,
  1092. 'verbose': 2,
  1093. 'refine': False}
  1094. save_results = True
  1095. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1096. irrelevant_labels = None #
  1097. edge_required = False #
  1098. # print settings.
  1099. print('parameters:')
  1100. print('dataset name:', ds_name)
  1101. print('mpg_options:', mpg_options)
  1102. print('kernel_options:', kernel_options)
  1103. print('ged_options:', ged_options)
  1104. print('mge_options:', mge_options)
  1105. print('save_results:', save_results)
  1106. print('irrelevant_labels:', irrelevant_labels)
  1107. print()
  1108. # generate preimages.
  1109. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1110. print('\n-------------------------------------')
  1111. print('fit method:', fit_method, '\n')
  1112. mpg_options['fit_method'] = fit_method
  1113. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1114. def xp_median_preimage_6_1():
  1115. """xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1116. """
  1117. # set parameters.
  1118. ds_name = 'COIL-RAG' #
  1119. mpg_options = {'fit_method': 'k-graphs',
  1120. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1121. 'ds_name': ds_name,
  1122. 'parallel': True, # False
  1123. 'time_limit_in_sec': 0,
  1124. 'max_itrs': 100,
  1125. 'max_itrs_without_update': 3,
  1126. 'epsilon_residual': 0.01,
  1127. 'epsilon_ec': 0.1,
  1128. 'verbose': 2}
  1129. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1130. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1131. kernel_options = {'name': 'StructuralSP',
  1132. 'edge_weight': None,
  1133. 'node_kernels': sub_kernels,
  1134. 'edge_kernels': sub_kernels,
  1135. 'compute_method': 'naive',
  1136. 'parallel': 'imap_unordered',
  1137. # 'parallel': None,
  1138. 'n_jobs': multiprocessing.cpu_count(),
  1139. 'normalize': True,
  1140. 'verbose': 2}
  1141. ged_options = {'method': 'IPFP',
  1142. 'initialization_method': 'RANDOM', # 'NODE'
  1143. 'initial_solutions': 10, # 1
  1144. 'edit_cost': 'NON_SYMBOLIC', #
  1145. 'attr_distance': 'euclidean',
  1146. 'ratio_runs_from_initial_solutions': 1,
  1147. 'threads': multiprocessing.cpu_count(),
  1148. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1149. mge_options = {'init_type': 'MEDOID',
  1150. 'random_inits': 10,
  1151. 'time_limit': 600,
  1152. 'verbose': 2,
  1153. 'refine': False}
  1154. save_results = True
  1155. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1156. irrelevant_labels = None #
  1157. edge_required = False #
  1158. # print settings.
  1159. print('parameters:')
  1160. print('dataset name:', ds_name)
  1161. print('mpg_options:', mpg_options)
  1162. print('kernel_options:', kernel_options)
  1163. print('ged_options:', ged_options)
  1164. print('mge_options:', mge_options)
  1165. print('save_results:', save_results)
  1166. print('irrelevant_labels:', irrelevant_labels)
  1167. print()
  1168. # generate preimages.
  1169. for fit_method in ['k-graphs'] + ['random'] * 5:
  1170. print('\n-------------------------------------')
  1171. print('fit method:', fit_method, '\n')
  1172. mpg_options['fit_method'] = fit_method
  1173. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1174. def xp_median_preimage_6_2():
  1175. """xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1176. """
  1177. # set parameters.
  1178. ds_name = 'COIL-RAG' #
  1179. mpg_options = {'fit_method': 'k-graphs',
  1180. 'init_ecc': [3, 3, 1, 3, 3, 1], #
  1181. 'ds_name': ds_name,
  1182. 'parallel': True, # False
  1183. 'time_limit_in_sec': 0,
  1184. 'max_itrs': 100,
  1185. 'max_itrs_without_update': 3,
  1186. 'epsilon_residual': 0.01,
  1187. 'epsilon_ec': 0.1,
  1188. 'verbose': 2}
  1189. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1190. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1191. kernel_options = {'name': 'ShortestPath',
  1192. 'edge_weight': None,
  1193. 'node_kernels': sub_kernels,
  1194. 'parallel': 'imap_unordered',
  1195. # 'parallel': None,
  1196. 'n_jobs': multiprocessing.cpu_count(),
  1197. 'normalize': True,
  1198. 'verbose': 2}
  1199. ged_options = {'method': 'IPFP',
  1200. 'initialization_method': 'RANDOM', # 'NODE'
  1201. 'initial_solutions': 10, # 1
  1202. 'edit_cost': 'NON_SYMBOLIC', #
  1203. 'attr_distance': 'euclidean',
  1204. 'ratio_runs_from_initial_solutions': 1,
  1205. 'threads': multiprocessing.cpu_count(),
  1206. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1207. mge_options = {'init_type': 'MEDOID',
  1208. 'random_inits': 10,
  1209. 'time_limit': 600,
  1210. 'verbose': 2,
  1211. 'refine': False}
  1212. save_results = True
  1213. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1214. irrelevant_labels = None #
  1215. edge_required = True #
  1216. # print settings.
  1217. print('parameters:')
  1218. print('dataset name:', ds_name)
  1219. print('mpg_options:', mpg_options)
  1220. print('kernel_options:', kernel_options)
  1221. print('ged_options:', ged_options)
  1222. print('mge_options:', mge_options)
  1223. print('save_results:', save_results)
  1224. print('irrelevant_labels:', irrelevant_labels)
  1225. print()
  1226. # generate preimages.
  1227. for fit_method in ['k-graphs'] + ['random'] * 5:
  1228. print('\n-------------------------------------')
  1229. print('fit method:', fit_method, '\n')
  1230. mpg_options['fit_method'] = fit_method
  1231. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1232. def xp_median_preimage_5_1():
  1233. """xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1234. """
  1235. # set parameters.
  1236. ds_name = 'FRANKENSTEIN' #
  1237. mpg_options = {'fit_method': 'k-graphs',
  1238. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1239. 'ds_name': ds_name,
  1240. 'parallel': True, # False
  1241. 'time_limit_in_sec': 0,
  1242. 'max_itrs': 100,
  1243. 'max_itrs_without_update': 3,
  1244. 'epsilon_residual': 0.01,
  1245. 'epsilon_ec': 0.1,
  1246. 'verbose': 2}
  1247. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1248. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1249. kernel_options = {'name': 'StructuralSP',
  1250. 'edge_weight': None,
  1251. 'node_kernels': sub_kernels,
  1252. 'edge_kernels': sub_kernels,
  1253. 'compute_method': 'naive',
  1254. 'parallel': 'imap_unordered',
  1255. # 'parallel': None,
  1256. 'n_jobs': multiprocessing.cpu_count(),
  1257. 'normalize': True,
  1258. 'verbose': 2}
  1259. ged_options = {'method': 'IPFP',
  1260. 'initialization_method': 'RANDOM', # 'NODE'
  1261. 'initial_solutions': 10, # 1
  1262. 'edit_cost': 'NON_SYMBOLIC',
  1263. 'attr_distance': 'euclidean',
  1264. 'ratio_runs_from_initial_solutions': 1,
  1265. 'threads': multiprocessing.cpu_count(),
  1266. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1267. mge_options = {'init_type': 'MEDOID',
  1268. 'random_inits': 10,
  1269. 'time_limit': 600,
  1270. 'verbose': 2,
  1271. 'refine': False}
  1272. save_results = True
  1273. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1274. irrelevant_labels = None #
  1275. edge_required = False #
  1276. # print settings.
  1277. print('parameters:')
  1278. print('dataset name:', ds_name)
  1279. print('mpg_options:', mpg_options)
  1280. print('kernel_options:', kernel_options)
  1281. print('ged_options:', ged_options)
  1282. print('mge_options:', mge_options)
  1283. print('save_results:', save_results)
  1284. print('irrelevant_labels:', irrelevant_labels)
  1285. print()
  1286. # generate preimages.
  1287. for fit_method in ['k-graphs'] + ['random'] * 5:
  1288. print('\n-------------------------------------')
  1289. print('fit method:', fit_method, '\n')
  1290. mpg_options['fit_method'] = fit_method
  1291. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1292. def xp_median_preimage_4_1():
  1293. """xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1294. """
  1295. # set parameters.
  1296. ds_name = 'COLORS-3' #
  1297. mpg_options = {'fit_method': 'k-graphs',
  1298. 'init_ecc': [3, 3, 1, 3, 3, 0], #
  1299. 'ds_name': ds_name,
  1300. 'parallel': True, # False
  1301. 'time_limit_in_sec': 0,
  1302. 'max_itrs': 100,
  1303. 'max_itrs_without_update': 3,
  1304. 'epsilon_residual': 0.01,
  1305. 'epsilon_ec': 0.1,
  1306. 'verbose': 2}
  1307. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1308. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1309. kernel_options = {'name': 'StructuralSP',
  1310. 'edge_weight': None,
  1311. 'node_kernels': sub_kernels,
  1312. 'edge_kernels': sub_kernels,
  1313. 'compute_method': 'naive',
  1314. 'parallel': 'imap_unordered',
  1315. # 'parallel': None,
  1316. 'n_jobs': multiprocessing.cpu_count(),
  1317. 'normalize': True,
  1318. 'verbose': 2}
  1319. ged_options = {'method': 'IPFP',
  1320. 'initialization_method': 'RANDOM', # 'NODE'
  1321. 'initial_solutions': 10, # 1
  1322. 'edit_cost': 'NON_SYMBOLIC',
  1323. 'attr_distance': 'euclidean',
  1324. 'ratio_runs_from_initial_solutions': 1,
  1325. 'threads': multiprocessing.cpu_count(),
  1326. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1327. mge_options = {'init_type': 'MEDOID',
  1328. 'random_inits': 10,
  1329. 'time_limit': 600,
  1330. 'verbose': 2,
  1331. 'refine': False}
  1332. save_results = True
  1333. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1334. irrelevant_labels = None #
  1335. edge_required = False #
  1336. # print settings.
  1337. print('parameters:')
  1338. print('dataset name:', ds_name)
  1339. print('mpg_options:', mpg_options)
  1340. print('kernel_options:', kernel_options)
  1341. print('ged_options:', ged_options)
  1342. print('mge_options:', mge_options)
  1343. print('save_results:', save_results)
  1344. print('irrelevant_labels:', irrelevant_labels)
  1345. print()
  1346. # generate preimages.
  1347. for fit_method in ['k-graphs'] + ['random'] * 5:
  1348. print('\n-------------------------------------')
  1349. print('fit method:', fit_method, '\n')
  1350. mpg_options['fit_method'] = fit_method
  1351. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1352. def xp_median_preimage_3_2():
  1353. """xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1354. """
  1355. # set parameters.
  1356. ds_name = 'Fingerprint' #
  1357. mpg_options = {'fit_method': 'k-graphs',
  1358. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  1359. 'ds_name': ds_name,
  1360. 'parallel': True, # False
  1361. 'time_limit_in_sec': 0,
  1362. 'max_itrs': 100,
  1363. 'max_itrs_without_update': 3,
  1364. 'epsilon_residual': 0.01,
  1365. 'epsilon_ec': 0.1,
  1366. 'verbose': 2}
  1367. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1368. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1369. kernel_options = {'name': 'ShortestPath',
  1370. 'edge_weight': None,
  1371. 'node_kernels': sub_kernels,
  1372. 'parallel': 'imap_unordered',
  1373. # 'parallel': None,
  1374. 'n_jobs': multiprocessing.cpu_count(),
  1375. 'normalize': True,
  1376. 'verbose': 2}
  1377. ged_options = {'method': 'IPFP',
  1378. 'initialization_method': 'RANDOM', # 'NODE'
  1379. 'initial_solutions': 10, # 1
  1380. 'edit_cost': 'LETTER2',
  1381. 'attr_distance': 'euclidean',
  1382. 'ratio_runs_from_initial_solutions': 1,
  1383. 'threads': multiprocessing.cpu_count(),
  1384. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1385. mge_options = {'init_type': 'MEDOID',
  1386. 'random_inits': 10,
  1387. 'time_limit': 600,
  1388. 'verbose': 2,
  1389. 'refine': False}
  1390. save_results = True
  1391. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1392. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1393. edge_required = True #
  1394. # print settings.
  1395. print('parameters:')
  1396. print('dataset name:', ds_name)
  1397. print('mpg_options:', mpg_options)
  1398. print('kernel_options:', kernel_options)
  1399. print('ged_options:', ged_options)
  1400. print('mge_options:', mge_options)
  1401. print('save_results:', save_results)
  1402. print('irrelevant_labels:', irrelevant_labels)
  1403. print()
  1404. # generate preimages.
  1405. for fit_method in ['k-graphs'] + ['random'] * 5:
  1406. print('\n-------------------------------------')
  1407. print('fit method:', fit_method, '\n')
  1408. mpg_options['fit_method'] = fit_method
  1409. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1410. def xp_median_preimage_3_1():
  1411. """xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1412. """
  1413. # set parameters.
  1414. ds_name = 'Fingerprint' #
  1415. mpg_options = {'fit_method': 'k-graphs',
  1416. 'init_ecc': [0.525, 0.525, 0.001, 0.125, 0.125], #
  1417. 'ds_name': ds_name,
  1418. 'parallel': True, # False
  1419. 'time_limit_in_sec': 0,
  1420. 'max_itrs': 100,
  1421. 'max_itrs_without_update': 3,
  1422. 'epsilon_residual': 0.01,
  1423. 'epsilon_ec': 0.1,
  1424. 'verbose': 2}
  1425. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1426. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1427. kernel_options = {'name': 'StructuralSP',
  1428. 'edge_weight': None,
  1429. 'node_kernels': sub_kernels,
  1430. 'edge_kernels': sub_kernels,
  1431. 'compute_method': 'naive',
  1432. 'parallel': 'imap_unordered',
  1433. # 'parallel': None,
  1434. 'n_jobs': multiprocessing.cpu_count(),
  1435. 'normalize': True,
  1436. 'verbose': 2}
  1437. ged_options = {'method': 'IPFP',
  1438. 'initialization_method': 'RANDOM', # 'NODE'
  1439. 'initial_solutions': 10, # 1
  1440. 'edit_cost': 'LETTER2',
  1441. 'attr_distance': 'euclidean',
  1442. 'ratio_runs_from_initial_solutions': 1,
  1443. 'threads': multiprocessing.cpu_count(),
  1444. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1445. mge_options = {'init_type': 'MEDOID',
  1446. 'random_inits': 10,
  1447. 'time_limit': 600,
  1448. 'verbose': 2,
  1449. 'refine': False}
  1450. save_results = True
  1451. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1452. irrelevant_labels = {'edge_attrs': ['orient', 'angle']} #
  1453. edge_required = False #
  1454. # print settings.
  1455. print('parameters:')
  1456. print('dataset name:', ds_name)
  1457. print('mpg_options:', mpg_options)
  1458. print('kernel_options:', kernel_options)
  1459. print('ged_options:', ged_options)
  1460. print('mge_options:', mge_options)
  1461. print('save_results:', save_results)
  1462. print('irrelevant_labels:', irrelevant_labels)
  1463. print()
  1464. # generate preimages.
  1465. for fit_method in ['k-graphs'] + ['random'] * 5:
  1466. print('\n-------------------------------------')
  1467. print('fit method:', fit_method, '\n')
  1468. mpg_options['fit_method'] = fit_method
  1469. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1470. def xp_median_preimage_2_1():
  1471. """xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1472. """
  1473. # set parameters.
  1474. ds_name = 'COIL-DEL' #
  1475. mpg_options = {'fit_method': 'k-graphs',
  1476. 'init_ecc': [3, 3, 1, 3, 3],
  1477. 'ds_name': ds_name,
  1478. 'parallel': True, # False
  1479. 'time_limit_in_sec': 0,
  1480. 'max_itrs': 100,
  1481. 'max_itrs_without_update': 3,
  1482. 'epsilon_residual': 0.01,
  1483. 'epsilon_ec': 0.1,
  1484. 'verbose': 2}
  1485. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1486. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1487. kernel_options = {'name': 'StructuralSP',
  1488. 'edge_weight': None,
  1489. 'node_kernels': sub_kernels,
  1490. 'edge_kernels': sub_kernels,
  1491. 'compute_method': 'naive',
  1492. 'parallel': 'imap_unordered',
  1493. # 'parallel': None,
  1494. 'n_jobs': multiprocessing.cpu_count(),
  1495. 'normalize': True,
  1496. 'verbose': 2}
  1497. ged_options = {'method': 'IPFP',
  1498. 'initialization_method': 'RANDOM', # 'NODE'
  1499. 'initial_solutions': 10, # 1
  1500. 'edit_cost': 'LETTER2',
  1501. 'attr_distance': 'euclidean',
  1502. 'ratio_runs_from_initial_solutions': 1,
  1503. 'threads': multiprocessing.cpu_count(),
  1504. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1505. mge_options = {'init_type': 'MEDOID',
  1506. 'random_inits': 10,
  1507. 'time_limit': 600,
  1508. 'verbose': 2,
  1509. 'refine': False}
  1510. save_results = True
  1511. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '.node_attrs/'
  1512. irrelevant_labels = {'edge_labels': ['valence']}
  1513. # print settings.
  1514. print('parameters:')
  1515. print('dataset name:', ds_name)
  1516. print('mpg_options:', mpg_options)
  1517. print('kernel_options:', kernel_options)
  1518. print('ged_options:', ged_options)
  1519. print('mge_options:', mge_options)
  1520. print('save_results:', save_results)
  1521. print('irrelevant_labels:', irrelevant_labels)
  1522. print()
  1523. # # compute gram matrices for each class a priori.
  1524. # print('Compute gram matrices for each class a priori.')
  1525. # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1526. # generate preimages.
  1527. for fit_method in ['k-graphs'] + ['random'] * 5:
  1528. print('\n-------------------------------------')
  1529. print('fit method:', fit_method, '\n')
  1530. mpg_options['fit_method'] = fit_method
  1531. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels)
  1532. def xp_median_preimage_1_1():
  1533. """xp 1_1: Letter-high, StructuralSP.
  1534. """
  1535. # set parameters.
  1536. ds_name = 'Letter-high'
  1537. mpg_options = {'fit_method': 'k-graphs',
  1538. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1539. 'ds_name': ds_name,
  1540. 'parallel': True, # False
  1541. 'time_limit_in_sec': 0,
  1542. 'max_itrs': 100,
  1543. 'max_itrs_without_update': 3,
  1544. 'epsilon_residual': 0.01,
  1545. 'epsilon_ec': 0.1,
  1546. 'verbose': 2}
  1547. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1548. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1549. kernel_options = {'name': 'StructuralSP',
  1550. 'edge_weight': None,
  1551. 'node_kernels': sub_kernels,
  1552. 'edge_kernels': sub_kernels,
  1553. 'compute_method': 'naive',
  1554. 'parallel': 'imap_unordered',
  1555. # 'parallel': None,
  1556. 'n_jobs': multiprocessing.cpu_count(),
  1557. 'normalize': True,
  1558. 'verbose': 2}
  1559. ged_options = {'method': 'IPFP',
  1560. 'initialization_method': 'RANDOM', # 'NODE'
  1561. 'initial_solutions': 10, # 1
  1562. 'edit_cost': 'LETTER2',
  1563. 'attr_distance': 'euclidean',
  1564. 'ratio_runs_from_initial_solutions': 1,
  1565. 'threads': multiprocessing.cpu_count(),
  1566. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1567. mge_options = {'init_type': 'MEDOID',
  1568. 'random_inits': 10,
  1569. 'time_limit': 600,
  1570. 'verbose': 2,
  1571. 'refine': False}
  1572. save_results = True
  1573. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1574. # print settings.
  1575. print('parameters:')
  1576. print('dataset name:', ds_name)
  1577. print('mpg_options:', mpg_options)
  1578. print('kernel_options:', kernel_options)
  1579. print('ged_options:', ged_options)
  1580. print('mge_options:', mge_options)
  1581. print('save_results:', save_results)
  1582. # generate preimages.
  1583. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1584. print('\n-------------------------------------')
  1585. print('fit method:', fit_method, '\n')
  1586. mpg_options['fit_method'] = fit_method
  1587. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1588. def xp_median_preimage_1_2():
  1589. """xp 1_2: Letter-high, ShortestPath.
  1590. """
  1591. # set parameters.
  1592. ds_name = 'Letter-high'
  1593. mpg_options = {'fit_method': 'k-graphs',
  1594. 'init_ecc': [0.675, 0.675, 0.75, 0.425, 0.425],
  1595. 'ds_name': ds_name,
  1596. 'parallel': True, # False
  1597. 'time_limit_in_sec': 0,
  1598. 'max_itrs': 100,
  1599. 'max_itrs_without_update': 3,
  1600. 'epsilon_residual': 0.01,
  1601. 'epsilon_ec': 0.1,
  1602. 'verbose': 2}
  1603. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1604. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1605. kernel_options = {'name': 'ShortestPath',
  1606. 'edge_weight': None,
  1607. 'node_kernels': sub_kernels,
  1608. 'parallel': 'imap_unordered',
  1609. # 'parallel': None,
  1610. 'n_jobs': multiprocessing.cpu_count(),
  1611. 'normalize': True,
  1612. 'verbose': 2}
  1613. ged_options = {'method': 'IPFP',
  1614. 'initialization_method': 'RANDOM', # 'NODE'
  1615. 'initial_solutions': 10, # 1
  1616. 'edit_cost': 'LETTER2',
  1617. 'attr_distance': 'euclidean',
  1618. 'ratio_runs_from_initial_solutions': 1,
  1619. 'threads': multiprocessing.cpu_count(),
  1620. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1621. mge_options = {'init_type': 'MEDOID',
  1622. 'random_inits': 10,
  1623. 'time_limit': 600,
  1624. 'verbose': 2,
  1625. 'refine': False}
  1626. save_results = True
  1627. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1628. irrelevant_labels = None #
  1629. edge_required = True #
  1630. # print settings.
  1631. print('parameters:')
  1632. print('dataset name:', ds_name)
  1633. print('mpg_options:', mpg_options)
  1634. print('kernel_options:', kernel_options)
  1635. print('ged_options:', ged_options)
  1636. print('mge_options:', mge_options)
  1637. print('save_results:', save_results)
  1638. print('irrelevant_labels:', irrelevant_labels)
  1639. print()
  1640. # generate preimages.
  1641. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1642. print('\n-------------------------------------')
  1643. print('fit method:', fit_method, '\n')
  1644. mpg_options['fit_method'] = fit_method
  1645. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1646. def xp_median_preimage_10_1():
  1647. """xp 10_1: Letter-med, StructuralSP.
  1648. """
  1649. # set parameters.
  1650. ds_name = 'Letter-med'
  1651. mpg_options = {'fit_method': 'k-graphs',
  1652. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1653. 'ds_name': ds_name,
  1654. 'parallel': True, # False
  1655. 'time_limit_in_sec': 0,
  1656. 'max_itrs': 100,
  1657. 'max_itrs_without_update': 3,
  1658. 'epsilon_residual': 0.01,
  1659. 'epsilon_ec': 0.1,
  1660. 'verbose': 2}
  1661. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1662. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1663. kernel_options = {'name': 'StructuralSP',
  1664. 'edge_weight': None,
  1665. 'node_kernels': sub_kernels,
  1666. 'edge_kernels': sub_kernels,
  1667. 'compute_method': 'naive',
  1668. 'parallel': 'imap_unordered',
  1669. # 'parallel': None,
  1670. 'n_jobs': multiprocessing.cpu_count(),
  1671. 'normalize': True,
  1672. 'verbose': 2}
  1673. ged_options = {'method': 'IPFP',
  1674. 'initialization_method': 'RANDOM', # 'NODE'
  1675. 'initial_solutions': 10, # 1
  1676. 'edit_cost': 'LETTER2',
  1677. 'attr_distance': 'euclidean',
  1678. 'ratio_runs_from_initial_solutions': 1,
  1679. 'threads': multiprocessing.cpu_count(),
  1680. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1681. mge_options = {'init_type': 'MEDOID',
  1682. 'random_inits': 10,
  1683. 'time_limit': 600,
  1684. 'verbose': 2,
  1685. 'refine': False}
  1686. save_results = True
  1687. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1688. # print settings.
  1689. print('parameters:')
  1690. print('dataset name:', ds_name)
  1691. print('mpg_options:', mpg_options)
  1692. print('kernel_options:', kernel_options)
  1693. print('ged_options:', ged_options)
  1694. print('mge_options:', mge_options)
  1695. print('save_results:', save_results)
  1696. # generate preimages.
  1697. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1698. print('\n-------------------------------------')
  1699. print('fit method:', fit_method, '\n')
  1700. mpg_options['fit_method'] = fit_method
  1701. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1702. def xp_median_preimage_10_2():
  1703. """xp 10_2: Letter-med, ShortestPath.
  1704. """
  1705. # set parameters.
  1706. ds_name = 'Letter-med'
  1707. mpg_options = {'fit_method': 'k-graphs',
  1708. 'init_ecc': [0.525, 0.525, 0.75, 0.475, 0.475],
  1709. 'ds_name': ds_name,
  1710. 'parallel': True, # False
  1711. 'time_limit_in_sec': 0,
  1712. 'max_itrs': 100,
  1713. 'max_itrs_without_update': 3,
  1714. 'epsilon_residual': 0.01,
  1715. 'epsilon_ec': 0.1,
  1716. 'verbose': 2}
  1717. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1718. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1719. kernel_options = {'name': 'ShortestPath',
  1720. 'edge_weight': None,
  1721. 'node_kernels': sub_kernels,
  1722. 'parallel': 'imap_unordered',
  1723. # 'parallel': None,
  1724. 'n_jobs': multiprocessing.cpu_count(),
  1725. 'normalize': True,
  1726. 'verbose': 2}
  1727. ged_options = {'method': 'IPFP',
  1728. 'initialization_method': 'RANDOM', # 'NODE'
  1729. 'initial_solutions': 10, # 1
  1730. 'edit_cost': 'LETTER2',
  1731. 'attr_distance': 'euclidean',
  1732. 'ratio_runs_from_initial_solutions': 1,
  1733. 'threads': multiprocessing.cpu_count(),
  1734. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1735. mge_options = {'init_type': 'MEDOID',
  1736. 'random_inits': 10,
  1737. 'time_limit': 600,
  1738. 'verbose': 2,
  1739. 'refine': False}
  1740. save_results = True
  1741. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1742. irrelevant_labels = None #
  1743. edge_required = True #
  1744. # print settings.
  1745. print('parameters:')
  1746. print('dataset name:', ds_name)
  1747. print('mpg_options:', mpg_options)
  1748. print('kernel_options:', kernel_options)
  1749. print('ged_options:', ged_options)
  1750. print('mge_options:', mge_options)
  1751. print('save_results:', save_results)
  1752. print('irrelevant_labels:', irrelevant_labels)
  1753. print()
  1754. # generate preimages.
  1755. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1756. print('\n-------------------------------------')
  1757. print('fit method:', fit_method, '\n')
  1758. mpg_options['fit_method'] = fit_method
  1759. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1760. def xp_median_preimage_11_1():
  1761. """xp 11_1: Letter-low, StructuralSP.
  1762. """
  1763. # set parameters.
  1764. ds_name = 'Letter-low'
  1765. mpg_options = {'fit_method': 'k-graphs',
  1766. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1767. 'ds_name': ds_name,
  1768. 'parallel': True, # False
  1769. 'time_limit_in_sec': 0,
  1770. 'max_itrs': 100,
  1771. 'max_itrs_without_update': 3,
  1772. 'epsilon_residual': 0.01,
  1773. 'epsilon_ec': 0.1,
  1774. 'verbose': 2}
  1775. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1776. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1777. kernel_options = {'name': 'StructuralSP',
  1778. 'edge_weight': None,
  1779. 'node_kernels': sub_kernels,
  1780. 'edge_kernels': sub_kernels,
  1781. 'compute_method': 'naive',
  1782. 'parallel': 'imap_unordered',
  1783. # 'parallel': None,
  1784. 'n_jobs': multiprocessing.cpu_count(),
  1785. 'normalize': True,
  1786. 'verbose': 2}
  1787. ged_options = {'method': 'IPFP',
  1788. 'initialization_method': 'RANDOM', # 'NODE'
  1789. 'initial_solutions': 10, # 1
  1790. 'edit_cost': 'LETTER2',
  1791. 'attr_distance': 'euclidean',
  1792. 'ratio_runs_from_initial_solutions': 1,
  1793. 'threads': multiprocessing.cpu_count(),
  1794. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1795. mge_options = {'init_type': 'MEDOID',
  1796. 'random_inits': 10,
  1797. 'time_limit': 600,
  1798. 'verbose': 2,
  1799. 'refine': False}
  1800. save_results = True
  1801. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1802. # print settings.
  1803. print('parameters:')
  1804. print('dataset name:', ds_name)
  1805. print('mpg_options:', mpg_options)
  1806. print('kernel_options:', kernel_options)
  1807. print('ged_options:', ged_options)
  1808. print('mge_options:', mge_options)
  1809. print('save_results:', save_results)
  1810. # generate preimages.
  1811. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1812. print('\n-------------------------------------')
  1813. print('fit method:', fit_method, '\n')
  1814. mpg_options['fit_method'] = fit_method
  1815. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save)
  1816. def xp_median_preimage_11_2():
  1817. """xp 11_2: Letter-low, ShortestPath.
  1818. """
  1819. # set parameters.
  1820. ds_name = 'Letter-low'
  1821. mpg_options = {'fit_method': 'k-graphs',
  1822. 'init_ecc': [0.075, 0.075, 0.25, 0.075, 0.075],
  1823. 'ds_name': ds_name,
  1824. 'parallel': True, # False
  1825. 'time_limit_in_sec': 0,
  1826. 'max_itrs': 100,
  1827. 'max_itrs_without_update': 3,
  1828. 'epsilon_residual': 0.01,
  1829. 'epsilon_ec': 0.1,
  1830. 'verbose': 2}
  1831. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  1832. sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}
  1833. kernel_options = {'name': 'ShortestPath',
  1834. 'edge_weight': None,
  1835. 'node_kernels': sub_kernels,
  1836. 'parallel': 'imap_unordered',
  1837. # 'parallel': None,
  1838. 'n_jobs': multiprocessing.cpu_count(),
  1839. 'normalize': True,
  1840. 'verbose': 2}
  1841. ged_options = {'method': 'IPFP',
  1842. 'initialization_method': 'RANDOM', # 'NODE'
  1843. 'initial_solutions': 10, # 1
  1844. 'edit_cost': 'LETTER2',
  1845. 'attr_distance': 'euclidean',
  1846. 'ratio_runs_from_initial_solutions': 1,
  1847. 'threads': multiprocessing.cpu_count(),
  1848. 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'}
  1849. mge_options = {'init_type': 'MEDOID',
  1850. 'random_inits': 10,
  1851. 'time_limit': 600,
  1852. 'verbose': 2,
  1853. 'refine': False}
  1854. save_results = True
  1855. dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/'
  1856. irrelevant_labels = None #
  1857. edge_required = True #
  1858. # print settings.
  1859. print('parameters:')
  1860. print('dataset name:', ds_name)
  1861. print('mpg_options:', mpg_options)
  1862. print('kernel_options:', kernel_options)
  1863. print('ged_options:', ged_options)
  1864. print('mge_options:', mge_options)
  1865. print('save_results:', save_results)
  1866. print('irrelevant_labels:', irrelevant_labels)
  1867. print()
  1868. # generate preimages.
  1869. for fit_method in ['k-graphs', 'expert'] + ['random'] * 5:
  1870. print('\n-------------------------------------')
  1871. print('fit method:', fit_method, '\n')
  1872. mpg_options['fit_method'] = fit_method
  1873. generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required)
  1874. if __name__ == "__main__":
  1875. # #### xp 1_1: Letter-high, StructuralSP.
  1876. # # xp_median_preimage_1_1()
  1877. # #### xp 1_2: Letter-high, ShortestPath.
  1878. # # xp_median_preimage_1_2()
  1879. # #### xp 10_1: Letter-med, StructuralSP.
  1880. # # xp_median_preimage_10_1()
  1881. # #### xp 10_2: Letter-med, ShortestPath.
  1882. # # xp_median_preimage_10_2()
  1883. # #### xp 11_1: Letter-low, StructuralSP.
  1884. # # xp_median_preimage_11_1()
  1885. # #### xp 11_2: Letter-low, ShortestPath.
  1886. # # xp_median_preimage_11_2()
  1887. #
  1888. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1889. # # xp_median_preimage_2_1()
  1890. #
  1891. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1892. # # xp_median_preimage_3_1()
  1893. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1894. # xp_median_preimage_3_2()
  1895. # #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1896. # # xp_median_preimage_4_1()
  1897. #
  1898. # #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1899. # # xp_median_preimage_5_1()
  1900. #
  1901. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1902. # # xp_median_preimage_6_1()
  1903. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1904. # xp_median_preimage_6_2()
  1905. # #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  1906. # # xp_median_preimage_7_1()
  1907. # #### xp 7_2: MUTAG, PathUpToH, using CONSTANT.
  1908. # # xp_median_preimage_7_2()
  1909. # #### xp 7_3: MUTAG, Treelet, using CONSTANT.
  1910. # # xp_median_preimage_7_3()
  1911. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1912. # xp_median_preimage_7_4()
  1913. #
  1914. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  1915. # # xp_median_preimage_8_1()
  1916. # #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT.
  1917. # # xp_median_preimage_8_2()
  1918. # #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT.
  1919. # # xp_median_preimage_8_3()
  1920. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  1921. # xp_median_preimage_8_4()
  1922. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  1923. # xp_median_preimage_9_1()
  1924. # #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only.
  1925. # xp_median_preimage_9_2()
  1926. # #### xp 9_3: MAO, Treelet, using CONSTANT, symbolic only.
  1927. # xp_median_preimage_9_3()
  1928. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  1929. # xp_median_preimage_9_4()
  1930. #### xp 12_1: PAH, StructuralSP, using NON_SYMBOLIC, unlabeled.
  1931. # xp_median_preimage_12_1()
  1932. #### xp 12_2: PAH, PathUpToH, using CONSTANT, unlabeled.
  1933. # xp_median_preimage_12_2()
  1934. #### xp 12_3: PAH, Treelet, using CONSTANT, unlabeled.
  1935. # xp_median_preimage_12_3()
  1936. #### xp 12_4: PAH, WeisfeilerLehman, using CONSTANT, unlabeled.
  1937. # xp_median_preimage_12_4()
  1938. #### xp 12_5: PAH, ShortestPath, using NON_SYMBOLIC, unlabeled.
  1939. # xp_median_preimage_12_5()
  1940. #### xp 13_1: PAH, StructuralSP, using NON_SYMBOLIC.
  1941. xp_median_preimage_13_1()
  1942. #### xp 13_2: PAH, ShortestPath, using NON_SYMBOLIC.
  1943. # xp_median_preimage_13_2()
  1944. # #### xp 7_4: MUTAG, WeisfeilerLehman, using CONSTANT.
  1945. # xp_median_preimage_7_4()
  1946. # #### xp 8_4: Monoterpenoides, WeisfeilerLehman, using CONSTANT.
  1947. # xp_median_preimage_8_4()
  1948. # #### xp 9_4: MAO, WeisfeilerLehman, using CONSTANT, symbolic only.
  1949. # xp_median_preimage_9_4()
  1950. # #### xp 10_1: Letter-med, StructuralSP.
  1951. # xp_median_preimage_10_1()
  1952. # #### xp 10_2: Letter-med, ShortestPath.
  1953. # xp_median_preimage_10_2()
  1954. # #### xp 11_1: Letter-low, StructuralSP.
  1955. # xp_median_preimage_11_1()
  1956. # #### xp 11_2: Letter-low, ShortestPath.
  1957. # xp_median_preimage_11_2()
  1958. #
  1959. # #### xp 1_1: Letter-high, StructuralSP.
  1960. # xp_median_preimage_1_1()
  1961. # #### xp 1_2: Letter-high, ShortestPath.
  1962. # xp_median_preimage_1_2()
  1963. # #### xp 3_1: Fingerprint, StructuralSP, using LETTER2, only node attrs.
  1964. # xp_median_preimage_3_1()
  1965. #
  1966. # #### xp 6_1: COIL-RAG, StructuralSP, using NON_SYMBOLIC.
  1967. # xp_median_preimage_6_1()
  1968. # #### xp 6_2: COIL-RAG, ShortestPath, using NON_SYMBOLIC.
  1969. # xp_median_preimage_6_2()
  1970. #
  1971. # #### xp 3_2: Fingerprint, ShortestPath, using LETTER2, only node attrs.
  1972. # xp_median_preimage_3_2()
  1973. #### xp 7_1: MUTAG, StructuralSP, using CONSTANT.
  1974. # xp_median_preimage_7_1()
  1975. # #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT.
  1976. # xp_median_preimage_8_1()
  1977. # #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only.
  1978. # xp_median_preimage_9_1()
  1979. # #### xp 2_1: COIL-DEL, StructuralSP, using LETTER2, only node attrs.
  1980. # xp_median_preimage_2_1()
  1981. #### xp 5_1: FRANKENSTEIN, StructuralSP, using NON_SYMBOLIC.
  1982. # xp_median_preimage_5_1()
  1983. #### xp 4_1: COLORS-3, StructuralSP, using NON_SYMBOLIC.
  1984. # xp_median_preimage_4_1()

A Python package for graph kernels, graph edit distances and graph pre-image problem.