You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_files.py 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. def load_dataset(filename, filename_targets=None, gformat=None, **kwargs):
  5. """Read graph data from filename and load them as NetworkX graphs.
  6. Parameters
  7. ----------
  8. filename : string
  9. The name of the file from where the dataset is read.
  10. filename_y : string
  11. The name of file of the targets corresponding to graphs.
  12. extra_params : dict
  13. Extra parameters only designated to '.mat' format.
  14. Return
  15. ------
  16. data : List of NetworkX graph.
  17. y : List
  18. Targets corresponding to graphs.
  19. Notes
  20. -----
  21. This function supports following graph dataset formats:
  22. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  23. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  24. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  25. 'sdf': load data from structured data file (.sdf file). See
  26. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  27. for details.
  28. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  29. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  30. for details.
  31. 'txt': Load graph data from a special .txt file. See
  32. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  33. for details. Note here filename is the name of either .txt file in
  34. the dataset directory.
  35. """
  36. extension = splitext(filename)[1][1:]
  37. if extension == "ds":
  38. data, y, label_names = load_from_ds(filename, filename_targets)
  39. elif extension == "cxl":
  40. dir_dataset = kwargs.get('dirname_dataset', None)
  41. data, y, label_names = load_from_xml(filename, dir_dataset)
  42. elif extension == 'xml':
  43. dir_dataset = kwargs.get('dirname_dataset', None)
  44. data, y, label_names = load_from_xml(filename, dir_dataset)
  45. elif extension == "mat":
  46. order = kwargs.get('order')
  47. data, y, label_names = load_mat(filename, order)
  48. elif extension == 'txt':
  49. data, y, label_names = load_tud(filename)
  50. return data, y, label_names
  51. def save_dataset(Gn, y, gformat='gxl', group=None, filename='gfile', **kwargs):
  52. """Save list of graphs.
  53. """
  54. import os
  55. dirname_ds = os.path.dirname(filename)
  56. if dirname_ds != '':
  57. dirname_ds += '/'
  58. os.makedirs(dirname_ds, exist_ok=True)
  59. if 'graph_dir' in kwargs:
  60. graph_dir = kwargs['graph_dir'] + '/'
  61. os.makedirs(graph_dir, exist_ok=True)
  62. del kwargs['graph_dir']
  63. else:
  64. graph_dir = dirname_ds
  65. if group == 'xml' and gformat == 'gxl':
  66. with open(filename + '.xml', 'w') as fgroup:
  67. fgroup.write("<?xml version=\"1.0\"?>")
  68. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  69. fgroup.write("\n<GraphCollection>")
  70. for idx, g in enumerate(Gn):
  71. fname_tmp = "graph" + str(idx) + ".gxl"
  72. save_gxl(g, graph_dir + fname_tmp, **kwargs)
  73. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(y[idx]) + "\"/>")
  74. fgroup.write("\n</GraphCollection>")
  75. fgroup.close()
  76. def load_ct(filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
  77. """load data from a Chemical Table (.ct) file.
  78. Notes
  79. ------
  80. a typical example of data in .ct is like this:
  81. 3 2 <- number of nodes and edges
  82. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  83. 0.0000 0.0000 0.0000 C
  84. 0.0000 0.0000 0.0000 O
  85. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  86. 2 3 1 1
  87. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  88. for detailed format discription.
  89. """
  90. import networkx as nx
  91. from os.path import basename
  92. g = nx.Graph()
  93. with open(filename) as f:
  94. content = f.read().splitlines()
  95. g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
  96. # read the counts line.
  97. tmp = content[1].split(' ')
  98. tmp = [x for x in tmp if x != '']
  99. nb_atoms = int(tmp[0].strip()) # number of atoms
  100. nb_bonds = int(tmp[1].strip()) # number of bonds
  101. count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
  102. i = 0
  103. while i < len(tmp):
  104. if count_line_tags[i] != '': # if not obsoleted
  105. g.graph[count_line_tags[i]] = tmp[i].strip()
  106. i += 1
  107. # read the atom block.
  108. atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
  109. for i in range(0, nb_atoms):
  110. tmp = content[i + 2].split(' ')
  111. tmp = [x for x in tmp if x != '']
  112. g.add_node(i)
  113. j = 0
  114. while j < len(tmp):
  115. if atom_tags[j] != '':
  116. g.nodes[i][atom_tags[j]] = tmp[j].strip()
  117. j += 1
  118. # read the bond block.
  119. bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
  120. for i in range(0, nb_bonds):
  121. tmp = content[i + g.number_of_nodes() + 2].split(' ')
  122. tmp = [x for x in tmp if x != '']
  123. n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
  124. g.add_edge(n1, n2)
  125. j = 2
  126. while j < len(tmp):
  127. if bond_tags[j] != '':
  128. g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
  129. j += 1
  130. # get label names.
  131. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  132. atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
  133. for nd in g.nodes():
  134. for key in g.nodes[nd]:
  135. if atom_symbolic[atom_tags.index(key)] == 1:
  136. label_names['node_labels'].append(key)
  137. else:
  138. label_names['node_attrs'].append(key)
  139. break
  140. bond_symbolic = [None, None, 1, 1, None, 1, 1]
  141. for ed in g.edges():
  142. for key in g.edges[ed]:
  143. if bond_symbolic[bond_tags.index(key)] == 1:
  144. label_names['edge_labels'].append(key)
  145. else:
  146. label_names['edge_attrs'].append(key)
  147. break
  148. return g, label_names
  149. def load_gxl(filename): # @todo: directed graphs.
  150. from os.path import basename
  151. import networkx as nx
  152. import xml.etree.ElementTree as ET
  153. tree = ET.parse(filename)
  154. root = tree.getroot()
  155. index = 0
  156. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  157. dic = {} # used to retrieve incident nodes of edges
  158. for node in root.iter('node'):
  159. dic[node.attrib['id']] = index
  160. labels = {}
  161. for attr in node.iter('attr'):
  162. labels[attr.attrib['name']] = attr[0].text
  163. g.add_node(index, **labels)
  164. index += 1
  165. for edge in root.iter('edge'):
  166. labels = {}
  167. for attr in edge.iter('attr'):
  168. labels[attr.attrib['name']] = attr[0].text
  169. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  170. # get label names.
  171. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  172. for node in root.iter('node'):
  173. for attr in node.iter('attr'):
  174. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  175. label_names['node_labels'].append(attr.attrib['name'])
  176. else:
  177. label_names['node_attrs'].append(attr.attrib['name'])
  178. break
  179. for edge in root.iter('edge'):
  180. for attr in edge.iter('attr'):
  181. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  182. label_names['edge_labels'].append(attr.attrib['name'])
  183. else:
  184. label_names['edge_attrs'].append(attr.attrib['name'])
  185. break
  186. return g, label_names
  187. def save_gxl(graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  188. if method == 'default':
  189. gxl_file = open(filename, 'w')
  190. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  191. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  192. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  193. if 'name' in graph.graph:
  194. name = str(graph.graph['name'])
  195. else:
  196. name = 'dummy'
  197. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  198. for v, attrs in graph.nodes(data=True):
  199. gxl_file.write("<node id=\"_" + str(v) + "\">")
  200. for l_name in node_labels:
  201. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  202. str(attrs[l_name]) + "</int></attr>")
  203. for a_name in node_attrs:
  204. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  205. str(attrs[a_name]) + "</float></attr>")
  206. gxl_file.write("</node>\n")
  207. for v1, v2, attrs in graph.edges(data=True):
  208. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  209. for l_name in edge_labels:
  210. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  211. str(attrs[l_name]) + "</int></attr>")
  212. for a_name in edge_attrs:
  213. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  214. str(attrs[a_name]) + "</float></attr>")
  215. gxl_file.write("</edge>\n")
  216. gxl_file.write("</graph>\n")
  217. gxl_file.write("</gxl>")
  218. gxl_file.close()
  219. elif method == 'benoit':
  220. import xml.etree.ElementTree as ET
  221. root_node = ET.Element('gxl')
  222. attr = dict()
  223. attr['id'] = str(graph.graph['name'])
  224. attr['edgeids'] = 'true'
  225. attr['edgemode'] = 'undirected'
  226. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  227. for v in graph:
  228. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  229. for attr in graph.nodes[v].keys():
  230. cur_attr = ET.SubElement(
  231. current_node, 'attr', attrib={'name': attr})
  232. cur_value = ET.SubElement(cur_attr,
  233. graph.nodes[v][attr].__class__.__name__)
  234. cur_value.text = graph.nodes[v][attr]
  235. for v1 in graph:
  236. for v2 in graph[v1]:
  237. if (v1 < v2): # Non oriented graphs
  238. cur_edge = ET.SubElement(
  239. graph_node,
  240. 'edge',
  241. attrib={
  242. 'from': str(v1),
  243. 'to': str(v2)
  244. })
  245. for attr in graph[v1][v2].keys():
  246. cur_attr = ET.SubElement(
  247. cur_edge, 'attr', attrib={'name': attr})
  248. cur_value = ET.SubElement(
  249. cur_attr, graph[v1][v2][attr].__class__.__name__)
  250. cur_value.text = str(graph[v1][v2][attr])
  251. tree = ET.ElementTree(root_node)
  252. tree.write(filename)
  253. elif method == 'gedlib':
  254. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  255. # pass
  256. gxl_file = open(filename, 'w')
  257. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  258. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  259. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  260. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  261. for v, attrs in graph.nodes(data=True):
  262. gxl_file.write("<node id=\"_" + str(v) + "\">")
  263. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  264. gxl_file.write("</node>\n")
  265. for v1, v2, attrs in graph.edges(data=True):
  266. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  267. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  268. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  269. gxl_file.write("</edge>\n")
  270. gxl_file.write("</graph>\n")
  271. gxl_file.write("</gxl>")
  272. gxl_file.close()
  273. elif method == 'gedlib-letter':
  274. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  275. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  276. gxl_file = open(filename, 'w')
  277. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  278. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  279. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  280. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  281. for v, attrs in graph.nodes(data=True):
  282. gxl_file.write("<node id=\"_" + str(v) + "\">")
  283. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  284. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  285. gxl_file.write("</node>\n")
  286. for v1, v2, attrs in graph.edges(data=True):
  287. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  288. gxl_file.write("</graph>\n")
  289. gxl_file.write("</gxl>")
  290. gxl_file.close()
  291. # def loadSDF(filename):
  292. # """load data from structured data file (.sdf file).
  293. # Notes
  294. # ------
  295. # A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  296. # Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  297. # """
  298. # import networkx as nx
  299. # from os.path import basename
  300. # from tqdm import tqdm
  301. # import sys
  302. # data = []
  303. # with open(filename) as f:
  304. # content = f.read().splitlines()
  305. # index = 0
  306. # pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  307. # while index < len(content):
  308. # index_old = index
  309. # g = nx.Graph(name=content[index].strip()) # set name of the graph
  310. # tmp = content[index + 3]
  311. # nb_nodes = int(tmp[:3]) # number of the nodes
  312. # nb_edges = int(tmp[3:6]) # number of the edges
  313. # for i in range(0, nb_nodes):
  314. # tmp = content[i + index + 4]
  315. # g.add_node(i, atom=tmp[31:34].strip())
  316. # for i in range(0, nb_edges):
  317. # tmp = content[i + index + g.number_of_nodes() + 4]
  318. # tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  319. # g.add_edge(
  320. # int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  321. # data.append(g)
  322. # index += 4 + g.number_of_nodes() + g.number_of_edges()
  323. # while content[index].strip() != '$$$$': # seperator
  324. # index += 1
  325. # index += 1
  326. # pbar.update(index - index_old)
  327. # pbar.update(1)
  328. # pbar.close()
  329. # return data
  330. def load_mat(filename, order): # @todo: need to be updated (auto order) or deprecated.
  331. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  332. Notes
  333. ------
  334. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  335. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  336. """
  337. from scipy.io import loadmat
  338. import numpy as np
  339. import networkx as nx
  340. data = []
  341. content = loadmat(filename)
  342. # print(content)
  343. # print('----')
  344. for key, value in content.items():
  345. if key[0] == 'l': # class label
  346. y = np.transpose(value)[0].tolist()
  347. # print(y)
  348. elif key[0] != '_':
  349. # print(value[0][0][0])
  350. # print()
  351. # print(value[0][0][1])
  352. # print()
  353. # print(value[0][0][2])
  354. # print()
  355. # if len(value[0][0]) > 3:
  356. # print(value[0][0][3])
  357. # print('----')
  358. # if adjacency matrix is not compressed / edge label exists
  359. if order[1] == 0:
  360. for i, item in enumerate(value[0]):
  361. # print(item)
  362. # print('------')
  363. g = nx.Graph(name=i) # set name of the graph
  364. nl = np.transpose(item[order[3]][0][0][0]) # node label
  365. # print(item[order[3]])
  366. # print()
  367. for index, label in enumerate(nl[0]):
  368. g.add_node(index, label_1=str(label))
  369. el = item[order[4]][0][0][0] # edge label
  370. for edge in el:
  371. g.add_edge(edge[0] - 1, edge[1] - 1, label_1=str(edge[2]))
  372. data.append(g)
  373. else:
  374. # from scipy.sparse import csc_matrix
  375. for i, item in enumerate(value[0]):
  376. # print(item)
  377. # print('------')
  378. g = nx.Graph(name=i) # set name of the graph
  379. nl = np.transpose(item[order[3]][0][0][0]) # node label
  380. # print(nl)
  381. # print()
  382. for index, label in enumerate(nl[0]):
  383. g.add_node(index, label_1=str(label))
  384. sam = item[order[0]] # sparse adjacency matrix
  385. index_no0 = sam.nonzero()
  386. for col, row in zip(index_no0[0], index_no0[1]):
  387. # print(col)
  388. # print(row)
  389. g.add_edge(col, row)
  390. data.append(g)
  391. # print(g.edges(data=True))
  392. label_names = {'node_labels': ['label_1'], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  393. if order[1] == 0:
  394. label_names['edge_labels'].append('label_1')
  395. return data, y, label_names
  396. def load_tud(filename):
  397. """Load graph data from TUD dataset files.
  398. Notes
  399. ------
  400. The graph data is loaded from separate files.
  401. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  402. """
  403. import networkx as nx
  404. from os import listdir
  405. from os.path import dirname, basename
  406. def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
  407. """Get information from DS_label_readme.txt file.
  408. """
  409. def get_label_names_from_line(line):
  410. """Get names of labels/attributes from a line.
  411. """
  412. str_names = line.split('[')[1].split(']')[0]
  413. names = str_names.split(',')
  414. names = [attr.strip() for attr in names]
  415. return names
  416. def get_class_label_map(label_map_strings):
  417. label_map = {}
  418. for string in label_map_strings:
  419. integer, label = string.split('\t')
  420. label_map[int(integer.strip())] = label.strip()
  421. return label_map
  422. label_names = {'node_labels': [], 'node_attrs': [],
  423. 'edge_labels': [], 'edge_attrs': []}
  424. class_label_map = None
  425. class_label_map_strings = []
  426. with open(frm) as rm:
  427. content_rm = rm.read().splitlines()
  428. i = 0
  429. while i < len(content_rm):
  430. line = content_rm[i].strip()
  431. # get node/edge labels and attributes.
  432. if line.startswith('Node labels:'):
  433. label_names['node_labels'] = get_label_names_from_line(line)
  434. elif line.startswith('Node attributes:'):
  435. label_names['node_attrs'] = get_label_names_from_line(line)
  436. elif line.startswith('Edge labels:'):
  437. label_names['edge_labels'] = get_label_names_from_line(line)
  438. elif line.startswith('Edge attributes:'):
  439. label_names['edge_attrs'] = get_label_names_from_line(line)
  440. # get class label map.
  441. elif line.startswith('Class labels were converted to integer values using this map:'):
  442. i += 2
  443. line = content_rm[i].strip()
  444. while line != '' and i < len(content_rm):
  445. class_label_map_strings.append(line)
  446. i += 1
  447. line = content_rm[i].strip()
  448. class_label_map = get_class_label_map(class_label_map_strings)
  449. i += 1
  450. return label_names, class_label_map
  451. # get dataset name.
  452. dirname_dataset = dirname(filename)
  453. filename = basename(filename)
  454. fn_split = filename.split('_A')
  455. ds_name = fn_split[0].strip()
  456. # load data file names
  457. for name in listdir(dirname_dataset):
  458. if ds_name + '_A' in name:
  459. fam = dirname_dataset + '/' + name
  460. elif ds_name + '_graph_indicator' in name:
  461. fgi = dirname_dataset + '/' + name
  462. elif ds_name + '_graph_labels' in name:
  463. fgl = dirname_dataset + '/' + name
  464. elif ds_name + '_node_labels' in name:
  465. fnl = dirname_dataset + '/' + name
  466. elif ds_name + '_edge_labels' in name:
  467. fel = dirname_dataset + '/' + name
  468. elif ds_name + '_edge_attributes' in name:
  469. fea = dirname_dataset + '/' + name
  470. elif ds_name + '_node_attributes' in name:
  471. fna = dirname_dataset + '/' + name
  472. elif ds_name + '_graph_attributes' in name:
  473. fga = dirname_dataset + '/' + name
  474. elif ds_name + '_label_readme' in name:
  475. frm = dirname_dataset + '/' + name
  476. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  477. elif ds_name + '_attributes' in name:
  478. fna = dirname_dataset + '/' + name
  479. # get labels and attributes names.
  480. if 'frm' in locals():
  481. label_names, class_label_map = get_infos_from_readme(frm)
  482. else:
  483. label_names = {'node_labels': [], 'node_attrs': [],
  484. 'edge_labels': [], 'edge_attrs': []}
  485. class_label_map = None
  486. with open(fgi) as gi:
  487. content_gi = gi.read().splitlines() # graph indicator
  488. with open(fam) as am:
  489. content_am = am.read().splitlines() # adjacency matrix
  490. # load targets.
  491. if 'fgl' in locals():
  492. with open(fgl) as gl:
  493. content_targets = gl.read().splitlines() # targets (classification)
  494. targets = [float(i) for i in content_targets]
  495. elif 'fga' in locals():
  496. with open(fga) as ga:
  497. content_targets = ga.read().splitlines() # targets (regression)
  498. targets = [int(i) for i in content_targets]
  499. else:
  500. raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
  501. if class_label_map is not None:
  502. targets = [class_label_map[t] for t in targets]
  503. # create graphs and add nodes
  504. data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
  505. if 'fnl' in locals():
  506. with open(fnl) as nl:
  507. content_nl = nl.read().splitlines() # node labels
  508. for idx, line in enumerate(content_gi):
  509. # transfer to int first in case of unexpected blanks
  510. data[int(line) - 1].add_node(idx)
  511. labels = [l.strip() for l in content_nl[idx].split(',')]
  512. if label_names['node_labels'] == []: # @todo: need fix bug.
  513. for i, label in enumerate(labels):
  514. l_name = 'label_' + str(i)
  515. data[int(line) - 1].nodes[idx][l_name] = label
  516. label_names['node_labels'].append(l_name)
  517. else:
  518. for i, l_name in enumerate(label_names['node_labels']):
  519. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  520. else:
  521. for i, line in enumerate(content_gi):
  522. data[int(line) - 1].add_node(i)
  523. # add edges
  524. for line in content_am:
  525. tmp = line.split(',')
  526. n1 = int(tmp[0]) - 1
  527. n2 = int(tmp[1]) - 1
  528. # ignore edge weight here.
  529. g = int(content_gi[n1]) - 1
  530. data[g].add_edge(n1, n2)
  531. # add edge labels
  532. if 'fel' in locals():
  533. with open(fel) as el:
  534. content_el = el.read().splitlines()
  535. for idx, line in enumerate(content_el):
  536. labels = [l.strip() for l in line.split(',')]
  537. n = [int(i) - 1 for i in content_am[idx].split(',')]
  538. g = int(content_gi[n[0]]) - 1
  539. if label_names['edge_labels'] == []:
  540. for i, label in enumerate(labels):
  541. l_name = 'label_' + str(i)
  542. data[g].edges[n[0], n[1]][l_name] = label
  543. label_names['edge_labels'].append(l_name)
  544. else:
  545. for i, l_name in enumerate(label_names['edge_labels']):
  546. data[g].edges[n[0], n[1]][l_name] = labels[i]
  547. # add node attributes
  548. if 'fna' in locals():
  549. with open(fna) as na:
  550. content_na = na.read().splitlines()
  551. for idx, line in enumerate(content_na):
  552. attrs = [a.strip() for a in line.split(',')]
  553. g = int(content_gi[idx]) - 1
  554. if label_names['node_attrs'] == []:
  555. for i, attr in enumerate(attrs):
  556. a_name = 'attr_' + str(i)
  557. data[g].nodes[idx][a_name] = attr
  558. label_names['node_attrs'].append(a_name)
  559. else:
  560. for i, a_name in enumerate(label_names['node_attrs']):
  561. data[g].nodes[idx][a_name] = attrs[i]
  562. # add edge attributes
  563. if 'fea' in locals():
  564. with open(fea) as ea:
  565. content_ea = ea.read().splitlines()
  566. for idx, line in enumerate(content_ea):
  567. attrs = [a.strip() for a in line.split(',')]
  568. n = [int(i) - 1 for i in content_am[idx].split(',')]
  569. g = int(content_gi[n[0]]) - 1
  570. if label_names['edge_attrs'] == []:
  571. for i, attr in enumerate(attrs):
  572. a_name = 'attr_' + str(i)
  573. data[g].edges[n[0], n[1]][a_name] = attr
  574. label_names['edge_attrs'].append(a_name)
  575. else:
  576. for i, a_name in enumerate(label_names['edge_attrs']):
  577. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  578. return data, targets, label_names
  579. def load_from_ds(filename, filename_targets):
  580. """Load data from .ds file.
  581. Possible graph formats include:
  582. '.ct': see function load_ct for detail.
  583. '.gxl': see dunction load_gxl for detail.
  584. Note these graph formats are checked automatically by the extensions of
  585. graph files.
  586. """
  587. dirname_dataset = dirname(filename)
  588. data = []
  589. y = []
  590. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  591. with open(filename) as fn:
  592. content = fn.read().splitlines()
  593. extension = splitext(content[0].split(' ')[0])[1][1:]
  594. if extension == 'ct':
  595. load_file_fun = load_ct
  596. elif extension == 'gxl' or extension == 'sdf': # @todo: .sdf not tested yet.
  597. load_file_fun = load_gxl
  598. if filename_targets is None or filename_targets == '':
  599. for i in range(0, len(content)):
  600. tmp = content[i].split(' ')
  601. # remove the '#'s in file names
  602. g, l_names = load_file_fun(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  603. data.append(g)
  604. _append_label_names(label_names, l_names)
  605. y.append(float(tmp[1]))
  606. else: # targets in a seperate file
  607. for i in range(0, len(content)):
  608. tmp = content[i]
  609. # remove the '#'s in file names
  610. g, l_names = load_file_fun(dirname_dataset + '/' + tmp.replace('#', '', 1))
  611. data.append(g)
  612. _append_label_names(label_names, l_names)
  613. with open(filename_targets) as fnt:
  614. content_y = fnt.read().splitlines()
  615. # assume entries in filename and filename_targets have the same order.
  616. for item in content_y:
  617. tmp = item.split(' ')
  618. # assume the 3rd entry in a line is y (for Alkane dataset)
  619. y.append(float(tmp[2]))
  620. return data, y, label_names
  621. # def load_from_cxl(filename):
  622. # import xml.etree.ElementTree as ET
  623. #
  624. # dirname_dataset = dirname(filename)
  625. # tree = ET.parse(filename)
  626. # root = tree.getroot()
  627. # data = []
  628. # y = []
  629. # for graph in root.iter('graph'):
  630. # mol_filename = graph.attrib['file']
  631. # mol_class = graph.attrib['class']
  632. # data.append(load_gxl(dirname_dataset + '/' + mol_filename))
  633. # y.append(mol_class)
  634. def load_from_xml(filename, dir_dataset=None):
  635. import xml.etree.ElementTree as ET
  636. if dir_dataset is not None:
  637. dir_dataset = dir_dataset
  638. else:
  639. dir_dataset = dirname(filename)
  640. tree = ET.parse(filename)
  641. root = tree.getroot()
  642. data = []
  643. y = []
  644. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  645. for graph in root.iter('graph'):
  646. mol_filename = graph.attrib['file']
  647. mol_class = graph.attrib['class']
  648. g, l_names = load_gxl(dir_dataset + '/' + mol_filename)
  649. data.append(g)
  650. _append_label_names(label_names, l_names)
  651. y.append(mol_class)
  652. return data, y, label_names
  653. def _append_label_names(label_names, new_names):
  654. for key, val in label_names.items():
  655. label_names[key] += [name for name in new_names[key] if name not in val]
  656. if __name__ == '__main__':
  657. # ### Load dataset from .ds file.
  658. # # .ct files.
  659. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  660. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  661. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  662. # ds_file = '../../datasets/Acyclic/dataset_bps.ds' # node symb
  663. # Gn, targets, label_names = load_dataset(ds_file)
  664. # ds_file = '../../datasets/MAO/dataset.ds' # node/edge symb
  665. # Gn, targets, label_names = load_dataset(ds_file)
  666. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  667. ## Gn, y = loadDataset(ds['dataset'])
  668. # print(Gn[1].graph)
  669. # print(Gn[1].nodes(data=True))
  670. # print(Gn[1].edges(data=True))
  671. # print(targets[1])
  672. # # .gxl file.
  673. # ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
  674. # Gn, y, label_names = load_dataset(ds_file)
  675. # print(Gn[1].graph)
  676. # print(Gn[1].nodes(data=True))
  677. # print(Gn[1].edges(data=True))
  678. # print(y[1])
  679. # .mat file.
  680. ds_file = '../../datasets/MUTAG_mat/MUTAG.mat'
  681. order = [0, 0, 3, 1, 2]
  682. Gn, targets, label_names = load_dataset(ds_file, order=order)
  683. print(Gn[1].graph)
  684. print(Gn[1].nodes(data=True))
  685. print(Gn[1].edges(data=True))
  686. print(targets[1])
  687. # ### Convert graph from one format to another.
  688. # # .gxl file.
  689. # import networkx as nx
  690. # ds = {'name': 'monoterpenoides',
  691. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  692. # Gn, y = loadDataset(ds['dataset'])
  693. # y = [int(i) for i in y]
  694. # print(Gn[1].nodes(data=True))
  695. # print(Gn[1].edges(data=True))
  696. # print(y[1])
  697. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  698. # Gn_new = []
  699. # for G in Gn:
  700. # G_new = nx.Graph()
  701. # for nd, attrs in G.nodes(data=True):
  702. # G_new.add_node(str(nd), chem=attrs['atom'])
  703. # for nd1, nd2, attrs in G.edges(data=True):
  704. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  705. ## G_new.add_edge(str(nd1), str(nd2))
  706. # Gn_new.append(G_new)
  707. # print(Gn_new[1].nodes(data=True))
  708. # print(Gn_new[1].edges(data=True))
  709. # print(Gn_new[1])
  710. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  711. # xparams = {'method': 'gedlib'}
  712. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  713. # save dataset.
  714. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  715. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  716. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  717. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  718. # test - new way to add labels and attributes.
  719. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  720. # filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
  721. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  722. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  723. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  724. # Gn, targets, label_names = load_dataset(filename)
  725. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.