You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

shortest_path.py 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Apr 7 15:24:58 2020
  5. @author: ljia
  6. @references:
  7. [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData
  8. Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.
  9. """
  10. import sys
  11. from itertools import product
  12. # from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import numpy as np
  16. from gklearn.utils.parallel import parallel_gm, parallel_me
  17. from gklearn.utils.utils import getSPGraph
  18. from gklearn.kernels import GraphKernel
  19. class ShortestPath(GraphKernel):
  20. def __init__(self, **kwargs):
  21. GraphKernel.__init__(self)
  22. self.__node_labels = kwargs.get('node_labels', [])
  23. self.__node_attrs = kwargs.get('node_attrs', [])
  24. self.__edge_weight = kwargs.get('edge_weight', None)
  25. self.__node_kernels = kwargs.get('node_kernels', None)
  26. self.__ds_infos = kwargs.get('ds_infos', {})
  27. def _compute_gm_series(self):
  28. # get shortest path graph of each graph.
  29. if self._verbose >= 2:
  30. iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
  31. else:
  32. iterator = self._graphs
  33. self._graphs = [getSPGraph(g, edge_weight=self.__edge_weight) for g in iterator]
  34. # compute Gram matrix.
  35. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  36. from itertools import combinations_with_replacement
  37. itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
  38. if self._verbose >= 2:
  39. iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
  40. else:
  41. iterator = itr
  42. for i, j in iterator:
  43. kernel = self.__sp_do(self._graphs[i], self._graphs[j])
  44. gram_matrix[i][j] = kernel
  45. gram_matrix[j][i] = kernel
  46. return gram_matrix
  47. def _compute_gm_imap_unordered(self):
  48. # get shortest path graph of each graph.
  49. pool = Pool(self._n_jobs)
  50. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  51. itr = zip(self._graphs, range(0, len(self._graphs)))
  52. if len(self._graphs) < 100 * self._n_jobs:
  53. chunksize = int(len(self._graphs) / self._n_jobs) + 1
  54. else:
  55. chunksize = 100
  56. if self._verbose >= 2:
  57. iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  58. desc='getting sp graphs', file=sys.stdout)
  59. else:
  60. iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize)
  61. for i, g in iterator:
  62. self._graphs[i] = g
  63. pool.close()
  64. pool.join()
  65. # compute Gram matrix.
  66. gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
  67. def init_worker(gs_toshare):
  68. global G_gs
  69. G_gs = gs_toshare
  70. do_fun = self._wrapper_sp_do
  71. parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
  72. glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose)
  73. return gram_matrix
  74. def _compute_kernel_list_series(self, g1, g_list):
  75. # get shortest path graphs of g1 and each graph in g_list.
  76. g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
  77. if self._verbose >= 2:
  78. iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
  79. else:
  80. iterator = g_list
  81. g_list = [getSPGraph(g, edge_weight=self.__edge_weight) for g in iterator]
  82. # compute kernel list.
  83. kernel_list = [None] * len(g_list)
  84. if self._verbose >= 2:
  85. iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
  86. else:
  87. iterator = range(len(g_list))
  88. for i in iterator:
  89. kernel = self.__sp_do(g1, g_list[i])
  90. kernel_list[i] = kernel
  91. return kernel_list
  92. def _compute_kernel_list_imap_unordered(self, g1, g_list):
  93. # get shortest path graphs of g1 and each graph in g_list.
  94. g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
  95. pool = Pool(self._n_jobs)
  96. get_sp_graphs_fun = self._wrapper_get_sp_graphs
  97. itr = zip(g_list, range(0, len(g_list)))
  98. if len(g_list) < 100 * self._n_jobs:
  99. chunksize = int(len(g_list) / self._n_jobs) + 1
  100. else:
  101. chunksize = 100
  102. if self._verbose >= 2:
  103. iterator = tqdm(pool.imap_unordered(get_sp_graphs_fun, itr, chunksize),
  104. desc='getting sp graphs', file=sys.stdout)
  105. else:
  106. iterator = pool.imap_unordered(get_sp_graphs_fun, itr, chunksize)
  107. for i, g in iterator:
  108. g_list[i] = g
  109. pool.close()
  110. pool.join()
  111. # compute Gram matrix.
  112. kernel_list = [None] * len(g_list)
  113. def init_worker(g1_toshare, gl_toshare):
  114. global G_g1, G_gl
  115. G_g1 = g1_toshare
  116. G_gl = gl_toshare
  117. do_fun = self._wrapper_kernel_list_do
  118. def func_assign(result, var_to_assign):
  119. var_to_assign[result[0]] = result[1]
  120. itr = range(len(g_list))
  121. len_itr = len(g_list)
  122. parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
  123. init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
  124. return kernel_list
  125. def _wrapper_kernel_list_do(self, itr):
  126. return itr, self.__sp_do(G_g1, G_gl[itr])
  127. def _compute_single_kernel_series(self, g1, g2):
  128. g1 = getSPGraph(g1, edge_weight=self.__edge_weight)
  129. g2 = getSPGraph(g2, edge_weight=self.__edge_weight)
  130. kernel = self.__sp_do(g1, g2)
  131. return kernel
  132. def _wrapper_get_sp_graphs(self, itr_item):
  133. g = itr_item[0]
  134. i = itr_item[1]
  135. return i, getSPGraph(g, edge_weight=self.__edge_weight)
  136. def __sp_do(self, g1, g2):
  137. kernel = 0
  138. # compute shortest path matrices first, method borrowed from FCSP.
  139. vk_dict = {} # shortest path matrices dict
  140. if len(self.__node_labels) > 0:
  141. # node symb and non-synb labeled
  142. if len(self.__node_attrs) > 0:
  143. kn = self.__node_kernels['mix']
  144. for n1, n2 in product(
  145. g1.nodes(data=True), g2.nodes(data=True)):
  146. n1_labels = [n1[1][nl] for nl in self.__node_labels]
  147. n2_labels = [n2[1][nl] for nl in self.__node_labels]
  148. n1_attrs = [n1[1][na] for na in self.__node_attrs]
  149. n2_attrs = [n2[1][na] for na in self.__node_attrs]
  150. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels, n1_attrs, n2_attrs)
  151. # node symb labeled
  152. else:
  153. kn = self.__node_kernels['symb']
  154. for n1 in g1.nodes(data=True):
  155. for n2 in g2.nodes(data=True):
  156. n1_labels = [n1[1][nl] for nl in self.__node_labels]
  157. n2_labels = [n2[1][nl] for nl in self.__node_labels]
  158. vk_dict[(n1[0], n2[0])] = kn(n1_labels, n2_labels)
  159. else:
  160. # node non-synb labeled
  161. if len(self.__node_attrs) > 0:
  162. kn = self.__node_kernels['nsymb']
  163. for n1 in g1.nodes(data=True):
  164. for n2 in g2.nodes(data=True):
  165. n1_attrs = [n1[1][na] for na in self.__node_attrs]
  166. n2_attrs = [n2[1][na] for na in self.__node_attrs]
  167. vk_dict[(n1[0], n2[0])] = kn(n1_attrs, n2_attrs)
  168. # node unlabeled
  169. else:
  170. for e1, e2 in product(
  171. g1.edges(data=True), g2.edges(data=True)):
  172. if e1[2]['cost'] == e2[2]['cost']:
  173. kernel += 1
  174. return kernel
  175. # compute graph kernels
  176. if self.__ds_infos['directed']:
  177. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  178. if e1[2]['cost'] == e2[2]['cost']:
  179. nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1], e2[1])]
  180. kn1 = nk11 * nk22
  181. kernel += kn1
  182. else:
  183. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  184. if e1[2]['cost'] == e2[2]['cost']:
  185. # each edge walk is counted twice, starting from both its extreme nodes.
  186. nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(
  187. e1[0], e2[1])], vk_dict[(e1[1], e2[0])], vk_dict[(e1[1], e2[1])]
  188. kn1 = nk11 * nk22
  189. kn2 = nk12 * nk21
  190. kernel += kn1 + kn2
  191. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  192. # # compute vertex kernels
  193. # try:
  194. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  195. # nx.number_of_nodes(g2)))
  196. # g1nl = enumerate(g1.nodes(data=True))
  197. # g2nl = enumerate(g2.nodes(data=True))
  198. # for i1, n1 in g1nl:
  199. # for i2, n2 in g2nl:
  200. # vk_mat[i1][i2] = kn(
  201. # n1[1][node_label], n2[1][node_label],
  202. # [n1[1]['attributes']], [n2[1]['attributes']])
  203. # range1 = range(0, len(edge_w_g[i]))
  204. # range2 = range(0, len(edge_w_g[j]))
  205. # for i1 in range1:
  206. # x1 = edge_x_g[i][i1]
  207. # y1 = edge_y_g[i][i1]
  208. # w1 = edge_w_g[i][i1]
  209. # for i2 in range2:
  210. # x2 = edge_x_g[j][i2]
  211. # y2 = edge_y_g[j][i2]
  212. # w2 = edge_w_g[j][i2]
  213. # ke = (w1 == w2)
  214. # if ke > 0:
  215. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  216. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  217. # kernel += kn1 + kn2
  218. return kernel
  219. def _wrapper_sp_do(self, itr):
  220. i = itr[0]
  221. j = itr[1]
  222. return i, j, self.__sp_do(G_gs[i], G_gs[j])

A Python package for graph kernels, graph edit distances and graph pre-image problem.