|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Mon Apr 13 18:02:46 2020
-
- @author: ljia
-
- @references:
-
- [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in
- chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
- """
-
- import sys
- from multiprocessing import Pool
- from tqdm import tqdm
- import numpy as np
- import networkx as nx
- from collections import Counter
- from itertools import chain
- from gklearn.utils import SpecialLabel
- from gklearn.utils.parallel import parallel_gm, parallel_me
- from gklearn.utils.utils import find_all_paths, get_mlti_dim_node_attrs
- from gklearn.kernels import GraphKernel
-
-
- class Treelet(GraphKernel):
-
- def __init__(self, **kwargs):
- GraphKernel.__init__(self)
- self.__node_labels = kwargs.get('node_labels', [])
- self.__edge_labels = kwargs.get('edge_labels', [])
- self.__sub_kernel = kwargs.get('sub_kernel', None)
- self.__ds_infos = kwargs.get('ds_infos', {})
- if self.__sub_kernel is None:
- raise Exception('Sub kernel not set.')
-
-
- def _compute_gm_series(self):
- self.__add_dummy_labels(self._graphs)
-
- # get all canonical keys of all graphs before computing kernels to save
- # time, but this may cost a lot of memory for large dataset.
- canonkeys = []
- if self._verbose >= 2:
- iterator = tqdm(self._graphs, desc='getting canonkeys', file=sys.stdout)
- else:
- iterator = self._graphs
- for g in iterator:
- canonkeys.append(self.__get_canonkeys(g))
-
- # compute Gram matrix.
- gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
-
- from itertools import combinations_with_replacement
- itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
- if self._verbose >= 2:
- iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
- else:
- iterator = itr
- for i, j in iterator:
- kernel = self.__kernel_do(canonkeys[i], canonkeys[j])
- gram_matrix[i][j] = kernel
- gram_matrix[j][i] = kernel # @todo: no directed graph considered?
-
- return gram_matrix
-
-
- def _compute_gm_imap_unordered(self):
- self.__add_dummy_labels(self._graphs)
-
- # get all canonical keys of all graphs before computing kernels to save
- # time, but this may cost a lot of memory for large dataset.
- pool = Pool(self._n_jobs)
- itr = zip(self._graphs, range(0, len(self._graphs)))
- if len(self._graphs) < 100 * self._n_jobs:
- chunksize = int(len(self._graphs) / self._n_jobs) + 1
- else:
- chunksize = 100
- canonkeys = [[] for _ in range(len(self._graphs))]
- get_fun = self._wrapper_get_canonkeys
- if self._verbose >= 2:
- iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize),
- desc='getting canonkeys', file=sys.stdout)
- else:
- iterator = pool.imap_unordered(get_fun, itr, chunksize)
- for i, ck in iterator:
- canonkeys[i] = ck
- pool.close()
- pool.join()
-
- # compute Gram matrix.
- gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
-
- def init_worker(canonkeys_toshare):
- global G_canonkeys
- G_canonkeys = canonkeys_toshare
- do_fun = self._wrapper_kernel_do
- parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
- glbv=(canonkeys,), n_jobs=self._n_jobs, verbose=self._verbose)
-
- return gram_matrix
-
-
- def _compute_kernel_list_series(self, g1, g_list):
- self.__add_dummy_labels(g_list + [g1])
-
- # get all canonical keys of all graphs before computing kernels to save
- # time, but this may cost a lot of memory for large dataset.
- canonkeys_1 = self.__get_canonkeys(g1)
- canonkeys_list = []
- if self._verbose >= 2:
- iterator = tqdm(g_list, desc='getting canonkeys', file=sys.stdout)
- else:
- iterator = g_list
- for g in iterator:
- canonkeys_list.append(self.__get_canonkeys(g))
-
- # compute kernel list.
- kernel_list = [None] * len(g_list)
- if self._verbose >= 2:
- iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
- else:
- iterator = range(len(g_list))
- for i in iterator:
- kernel = self.__kernel_do(canonkeys_1, canonkeys_list[i])
- kernel_list[i] = kernel
-
- return kernel_list
-
-
- def _compute_kernel_list_imap_unordered(self, g1, g_list):
- self.__add_dummy_labels(g_list + [g1])
-
- # get all canonical keys of all graphs before computing kernels to save
- # time, but this may cost a lot of memory for large dataset.
- canonkeys_1 = self.__get_canonkeys(g1)
- canonkeys_list = [[] for _ in range(len(g_list))]
- pool = Pool(self._n_jobs)
- itr = zip(g_list, range(0, len(g_list)))
- if len(g_list) < 100 * self._n_jobs:
- chunksize = int(len(g_list) / self._n_jobs) + 1
- else:
- chunksize = 100
- get_fun = self._wrapper_get_canonkeys
- if self._verbose >= 2:
- iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize),
- desc='getting canonkeys', file=sys.stdout)
- else:
- iterator = pool.imap_unordered(get_fun, itr, chunksize)
- for i, ck in iterator:
- canonkeys_list[i] = ck
- pool.close()
- pool.join()
-
- # compute kernel list.
- kernel_list = [None] * len(g_list)
-
- def init_worker(ck_1_toshare, ck_list_toshare):
- global G_ck_1, G_ck_list
- G_ck_1 = ck_1_toshare
- G_ck_list = ck_list_toshare
- do_fun = self._wrapper_kernel_list_do
- def func_assign(result, var_to_assign):
- var_to_assign[result[0]] = result[1]
- itr = range(len(g_list))
- len_itr = len(g_list)
- parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
- init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered',
- n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
-
- return kernel_list
-
-
- def _wrapper_kernel_list_do(self, itr):
- return itr, self.__kernel_do(G_ck_1, G_ck_list[itr])
-
-
- def _compute_single_kernel_series(self, g1, g2):
- self.__add_dummy_labels([g1] + [g2])
- canonkeys_1 = self.__get_canonkeys(g1)
- canonkeys_2 = self.__get_canonkeys(g2)
- kernel = self.__kernel_do(canonkeys_1, canonkeys_2)
- return kernel
-
-
- def __kernel_do(self, canonkey1, canonkey2):
- """Compute treelet graph kernel between 2 graphs.
-
- Parameters
- ----------
- canonkey1, canonkey2 : list
- List of canonical keys in 2 graphs, where each key is represented by a string.
-
- Return
- ------
- kernel : float
- Treelet kernel between 2 graphs.
- """
- keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
- vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys])
- vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys])
- kernel = self.__sub_kernel(vector1, vector2)
- return kernel
-
-
- def _wrapper_kernel_do(self, itr):
- i = itr[0]
- j = itr[1]
- return i, j, self.__kernel_do(G_canonkeys[i], G_canonkeys[j])
-
-
- def __get_canonkeys(self, G):
- """Generate canonical keys of all treelets in a graph.
-
- Parameters
- ----------
- G : NetworkX graphs
- The graph in which keys are generated.
-
- Return
- ------
- canonkey/canonkey_l : dict
- For unlabeled graphs, canonkey is a dictionary which records amount of
- every tree pattern. For labeled graphs, canonkey_l is one which keeps
- track of amount of every treelet.
- """
- patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
- canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
-
- ### structural analysis ###
- ### In this section, a list of patterns is generated for each graphlet,
- ### where every pattern is represented by nodes ordered by Morgan's
- ### extended labeling.
- # linear patterns
- patterns['0'] = list(G.nodes())
- canonkey['0'] = nx.number_of_nodes(G)
- for i in range(1, 6): # for i in range(1, 6):
- patterns[str(i)] = find_all_paths(G, i, self.__ds_infos['directed'])
- canonkey[str(i)] = len(patterns[str(i)])
-
- # n-star patterns
- patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3]
- patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4]
- patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5]
- # n-star patterns
- canonkey['6'] = len(patterns['3star'])
- canonkey['8'] = len(patterns['4star'])
- canonkey['d'] = len(patterns['5star'])
-
- # pattern 7
- patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
- for pattern in patterns['3star']:
- for i in range(1, len(pattern)): # for each neighbor of node 0
- if G.degree(pattern[i]) >= 2:
- pattern_t = pattern[:]
- # set the node with degree >= 2 as the 4th node
- pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
- for neighborx in G[pattern[i]]:
- if neighborx != pattern[0]:
- new_pattern = pattern_t + [neighborx]
- patterns['7'].append(new_pattern)
- canonkey['7'] = len(patterns['7'])
-
- # pattern 11
- patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
- for pattern in patterns['4star']:
- for i in range(1, len(pattern)):
- if G.degree(pattern[i]) >= 2:
- pattern_t = pattern[:]
- pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
- for neighborx in G[pattern[i]]:
- if neighborx != pattern[0]:
- new_pattern = pattern_t + [neighborx]
- patterns['11'].append(new_pattern)
- canonkey['b'] = len(patterns['11'])
-
- # pattern 12
- patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
- rootlist = [] # a list of root nodes, whose extended labels are 3
- for pattern in patterns['3star']:
- if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
- rootlist.append(pattern[0])
- for i in range(1, len(pattern)):
- if G.degree(pattern[i]) >= 3:
- rootlist.append(pattern[i])
- pattern_t = pattern[:]
- pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
- for neighborx1 in G[pattern[i]]:
- if neighborx1 != pattern[0]:
- for neighborx2 in G[pattern[i]]:
- if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
- new_pattern = pattern_t + [neighborx1] + [neighborx2]
- # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
- patterns['12'].append(new_pattern)
- canonkey['c'] = int(len(patterns['12']) / 2)
-
- # pattern 9
- patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
- for pattern in patterns['3star']:
- for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
- for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2]:
- pattern_t = pattern[:]
- # move nodes with extended labels 4 to specific position to correspond to their children
- pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
- pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
- for neighborx1 in G[pairs[0]]:
- if neighborx1 != pattern[0]:
- for neighborx2 in G[pairs[1]]:
- if neighborx2 != pattern[0]:
- new_pattern = pattern_t + [neighborx1] + [neighborx2]
- patterns['9'].append(new_pattern)
- canonkey['9'] = len(patterns['9'])
-
- # pattern 10
- patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
- for pattern in patterns['3star']:
- for i in range(1, len(pattern)):
- if G.degree(pattern[i]) >= 2:
- for neighborx in G[pattern[i]]:
- if neighborx != pattern[0] and G.degree(neighborx) >= 2:
- pattern_t = pattern[:]
- pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
- new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
- patterns['10'].extend(new_patterns)
- canonkey['a'] = len(patterns['10'])
-
- ### labeling information ###
- ### In this section, a list of canonical keys is generated for every
- ### pattern obtained in the structural analysis section above, which is a
- ### string corresponding to a unique treelet. A dictionary is built to keep
- ### track of the amount of every treelet.
- if len(self.__node_labels) > 0 or len(self.__edge_labels) > 0:
- canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
-
- # linear patterns
- canonkey_t = Counter(get_mlti_dim_node_attrs(G, self.__node_labels))
- for key in canonkey_t:
- canonkey_l[('0', key)] = canonkey_t[key]
-
- for i in range(1, 6): # for i in range(1, 6):
- treelet = []
- for pattern in patterns[str(i)]:
- canonlist = []
- for idx, node in enumerate(pattern[:-1]):
- canonlist.append(tuple(G.nodes[node][nl] for nl in self.__node_labels))
- canonlist.append(tuple(G[node][pattern[idx+1]][el] for el in self.__edge_labels))
- canonlist.append(tuple(G.nodes[pattern[-1]][nl] for nl in self.__node_labels))
- canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1]
- treelet.append(tuple([str(i)] + canonkey_t))
- canonkey_l.update(Counter(treelet))
-
- # n-star patterns
- for i in range(3, 6):
- treelet = []
- for pattern in patterns[str(i) + 'star']:
- canonlist = []
- for leaf in pattern[1:]:
- nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels)
- elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels)
- canonlist.append(tuple((nlabels, elabels)))
- canonlist.sort()
- canonlist = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['d' if i == 5 else str(i * 2)] +
- [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)]
- + canonlist)
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 7
- treelet = []
- for pattern in patterns['7']:
- canonlist = []
- for leaf in pattern[1:3]:
- nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels)
- elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels)
- canonlist.append(tuple((nlabels, elabels)))
- canonlist.sort()
- canonlist = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['7']
- + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist
- + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)]
- + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[4]][pattern[3]][el] for el in self.__edge_labels)])
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 11
- treelet = []
- for pattern in patterns['11']:
- canonlist = []
- for leaf in pattern[1:4]:
- nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels)
- elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels)
- canonlist.append(tuple((nlabels, elabels)))
- canonlist.sort()
- canonlist = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['b']
- + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist
- + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[4]][pattern[0]][el] for el in self.__edge_labels)]
- + [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[5]][pattern[4]][el] for el in self.__edge_labels)])
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 10
- treelet = []
- for pattern in patterns['10']:
- canonkey4 = [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels),
- tuple(G[pattern[5]][pattern[4]][el] for el in self.__edge_labels)]
- canonlist = []
- for leaf in pattern[1:3]:
- nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels)
- elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels)
- canonlist.append(tuple((nlabels, elabels)))
- canonlist.sort()
- canonkey0 = list(chain.from_iterable(canonlist))
- canonkey_t = tuple(['a']
- + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)]
- + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[4]][pattern[3]][el] for el in self.__edge_labels)]
- + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[0]][pattern[3]][el] for el in self.__edge_labels)]
- + canonkey4 + canonkey0)
- treelet.append(canonkey_t)
- canonkey_l.update(Counter(treelet))
-
- # pattern 12
- treelet = []
- for pattern in patterns['12']:
- canonlist0 = []
- for leaf in pattern[1:3]:
- nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels)
- elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels)
- canonlist0.append(tuple((nlabels, elabels)))
- canonlist0.sort()
- canonlist0 = list(chain.from_iterable(canonlist0))
- canonlist3 = []
- for leaf in pattern[4:6]:
- nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels)
- elabels = tuple(G[leaf][pattern[3]][el] for el in self.__edge_labels)
- canonlist3.append(tuple((nlabels, elabels)))
- canonlist3.sort()
- canonlist3 = list(chain.from_iterable(canonlist3))
-
- # 2 possible key can be generated from 2 nodes with extended label 3,
- # select the one with lower lexicographic order.
- canonkey_t1 = tuple(['c']
- + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist0
- + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)]
- + canonlist3)
- canonkey_t2 = tuple(['c']
- + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] + canonlist3
- + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)]
- + [tuple(G[pattern[0]][pattern[3]][el] for el in self.__edge_labels)]
- + canonlist0)
- treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
- canonkey_l.update(Counter(treelet))
-
- # pattern 9
- treelet = []
- for pattern in patterns['9']:
- canonkey2 = [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels),
- tuple(G[pattern[4]][pattern[2]][el] for el in self.__edge_labels)]
- canonkey3 = [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels),
- tuple(G[pattern[5]][pattern[3]][el] for el in self.__edge_labels)]
- prekey2 = [tuple(G.nodes[pattern[2]][nl] for nl in self.__node_labels),
- tuple(G[pattern[2]][pattern[0]][el] for el in self.__edge_labels)]
- prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels),
- tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)]
- if prekey2 + canonkey2 < prekey3 + canonkey3:
- canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self.__node_labels)] \
- + [tuple(G[pattern[1]][pattern[0]][el] for el in self.__edge_labels)] \
- + prekey2 + prekey3 + canonkey2 + canonkey3
- else:
- canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self.__node_labels)] \
- + [tuple(G[pattern[1]][pattern[0]][el] for el in self.__edge_labels)] \
- + prekey3 + prekey2 + canonkey3 + canonkey2
- treelet.append(tuple(['9']
- + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)]
- + canonkey_t))
- canonkey_l.update(Counter(treelet))
-
- return canonkey_l
-
- return canonkey
-
-
- def _wrapper_get_canonkeys(self, itr_item):
- g = itr_item[0]
- i = itr_item[1]
- return i, self.__get_canonkeys(g)
-
-
- def __add_dummy_labels(self, Gn):
- if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY):
- for i in range(len(Gn)):
- nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY)
- self.__node_labels = [SpecialLabel.DUMMY]
- if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY):
- for i in range(len(Gn)):
- nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY)
- self.__edge_labels = [SpecialLabel.DUMMY]
|