You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

spKernel.py 10 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. """
  2. @author: linlin
  3. @references:
  4. [1] Borgwardt KM, Kriegel HP. Shortest-path kernels on graphs. InData
  5. Mining, Fifth IEEE International Conference on 2005 Nov 27 (pp. 8-pp). IEEE.
  6. """
  7. import sys
  8. import time
  9. from itertools import product
  10. from functools import partial
  11. from multiprocessing import Pool
  12. from tqdm import tqdm
  13. import networkx as nx
  14. import numpy as np
  15. from gklearn.utils.utils import getSPGraph
  16. from gklearn.utils.graphdataset import get_dataset_attributes
  17. from gklearn.utils.parallel import parallel_gm
  18. def spkernel(*args,
  19. node_label='atom',
  20. edge_weight=None,
  21. node_kernels=None,
  22. parallel='imap_unordered',
  23. n_jobs=None,
  24. chunksize=None,
  25. verbose=True):
  26. """Compute shortest-path kernels between graphs.
  27. Parameters
  28. ----------
  29. Gn : List of NetworkX graph
  30. List of graphs between which the kernels are computed.
  31. G1, G2 : NetworkX graphs
  32. Two graphs between which the kernel is computed.
  33. node_label : string
  34. Node attribute used as label. The default node label is atom.
  35. edge_weight : string
  36. Edge attribute name corresponding to the edge weight.
  37. node_kernels : dict
  38. A dictionary of kernel functions for nodes, including 3 items: 'symb'
  39. for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
  40. for both labels. The first 2 functions take two node labels as
  41. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  42. non-symbolic label for each the two nodes. Each label is in form of 2-D
  43. dimension array (n_samples, n_features). Each function returns an
  44. number as the kernel value. Ignored when nodes are unlabeled.
  45. n_jobs : int
  46. Number of jobs for parallelization.
  47. Return
  48. ------
  49. Kmatrix : Numpy matrix
  50. Kernel matrix, each element of which is the sp kernel between 2 praphs.
  51. """
  52. # pre-process
  53. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  54. Gn = [g.copy() for g in Gn]
  55. weight = None
  56. if edge_weight is None:
  57. if verbose:
  58. print('\n None edge weight specified. Set all weight to 1.\n')
  59. else:
  60. try:
  61. some_weight = list(
  62. nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
  63. if isinstance(some_weight, (float, int)):
  64. weight = edge_weight
  65. else:
  66. if verbose:
  67. print(
  68. '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
  69. % edge_weight)
  70. except:
  71. if verbose:
  72. print(
  73. '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
  74. % edge_weight)
  75. ds_attrs = get_dataset_attributes(
  76. Gn,
  77. attr_names=['node_labeled', 'node_attr_dim', 'is_directed'],
  78. node_label=node_label)
  79. # remove graphs with no edges, as no sp can be found in their structures,
  80. # so the kernel between such a graph and itself will be zero.
  81. len_gn = len(Gn)
  82. Gn = [(idx, G) for idx, G in enumerate(Gn) if nx.number_of_edges(G) != 0]
  83. idx = [G[0] for G in Gn]
  84. Gn = [G[1] for G in Gn]
  85. if len(Gn) != len_gn:
  86. if verbose:
  87. print('\n %d graphs are removed as they don\'t contain edges.\n' %
  88. (len_gn - len(Gn)))
  89. start_time = time.time()
  90. if parallel == 'imap_unordered':
  91. pool = Pool(n_jobs)
  92. # get shortest path graphs of Gn
  93. getsp_partial = partial(wrapper_getSPGraph, weight)
  94. itr = zip(Gn, range(0, len(Gn)))
  95. if chunksize is None:
  96. if len(Gn) < 100 * n_jobs:
  97. # # use default chunksize as pool.map when iterable is less than 100
  98. # chunksize, extra = divmod(len(Gn), n_jobs * 4)
  99. # if extra:
  100. # chunksize += 1
  101. chunksize = int(len(Gn) / n_jobs) + 1
  102. else:
  103. chunksize = 100
  104. if verbose:
  105. iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize),
  106. desc='getting sp graphs', file=sys.stdout)
  107. else:
  108. iterator = pool.imap_unordered(getsp_partial, itr, chunksize)
  109. for i, g in iterator:
  110. Gn[i] = g
  111. pool.close()
  112. pool.join()
  113. elif parallel is None:
  114. pass
  115. # # ---- direct running, normally use single CPU core. ----
  116. # for i in tqdm(range(len(Gn)), desc='getting sp graphs', file=sys.stdout):
  117. # i, Gn[i] = wrapper_getSPGraph(weight, (Gn[i], i))
  118. # # ---- use pool.map to parallel ----
  119. # result_sp = pool.map(getsp_partial, range(0, len(Gn)))
  120. # for i in result_sp:
  121. # Gn[i[0]] = i[1]
  122. # or
  123. # getsp_partial = partial(wrap_getSPGraph, Gn, weight)
  124. # for i, g in tqdm(
  125. # pool.map(getsp_partial, range(0, len(Gn))),
  126. # desc='getting sp graphs',
  127. # file=sys.stdout):
  128. # Gn[i] = g
  129. # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
  130. # sp_ml = [0] * len(Gn) # shortest path matrices
  131. # for i in result_sp:
  132. # sp_ml[i[0]] = i[1]
  133. # edge_x_g = [[] for i in range(len(sp_ml))]
  134. # edge_y_g = [[] for i in range(len(sp_ml))]
  135. # edge_w_g = [[] for i in range(len(sp_ml))]
  136. # for idx, item in enumerate(sp_ml):
  137. # for i1 in range(len(item)):
  138. # for i2 in range(i1 + 1, len(item)):
  139. # if item[i1, i2] != np.inf:
  140. # edge_x_g[idx].append(i1)
  141. # edge_y_g[idx].append(i2)
  142. # edge_w_g[idx].append(item[i1, i2])
  143. # print(len(edge_x_g[0]))
  144. # print(len(edge_y_g[0]))
  145. # print(len(edge_w_g[0]))
  146. Kmatrix = np.zeros((len(Gn), len(Gn)))
  147. # ---- use pool.imap_unordered to parallel and track progress. ----
  148. def init_worker(gn_toshare):
  149. global G_gn
  150. G_gn = gn_toshare
  151. do_partial = partial(wrapper_sp_do, ds_attrs, node_label, node_kernels)
  152. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  153. glbv=(Gn,), n_jobs=n_jobs, chunksize=chunksize, verbose=verbose)
  154. # # ---- use pool.map to parallel. ----
  155. # # result_perf = pool.map(do_partial, itr)
  156. # do_partial = partial(spkernel_do, Gn, ds_attrs, node_label, node_kernels)
  157. # itr = combinations_with_replacement(range(0, len(Gn)), 2)
  158. # for i, j, kernel in tqdm(
  159. # pool.map(do_partial, itr), desc='Computing kernels',
  160. # file=sys.stdout):
  161. # Kmatrix[i][j] = kernel
  162. # Kmatrix[j][i] = kernel
  163. # pool.close()
  164. # pool.join()
  165. # # ---- use joblib.Parallel to parallel and track progress. ----
  166. # result_perf = Parallel(
  167. # n_jobs=n_jobs, verbose=10)(
  168. # delayed(do_partial)(ij)
  169. # for ij in combinations_with_replacement(range(0, len(Gn)), 2))
  170. # result_perf = [
  171. # do_partial(ij)
  172. # for ij in combinations_with_replacement(range(0, len(Gn)), 2)
  173. # ]
  174. # for i in result_perf:
  175. # Kmatrix[i[0]][i[1]] = i[2]
  176. # Kmatrix[i[1]][i[0]] = i[2]
  177. # # ---- direct running, normally use single CPU core. ----
  178. # from itertools import combinations_with_replacement
  179. # itr = combinations_with_replacement(range(0, len(Gn)), 2)
  180. # for i, j in tqdm(itr, desc='Computing kernels', file=sys.stdout):
  181. # kernel = spkernel_do(Gn[i], Gn[j], ds_attrs, node_label, node_kernels)
  182. # Kmatrix[i][j] = kernel
  183. # Kmatrix[j][i] = kernel
  184. run_time = time.time() - start_time
  185. if verbose:
  186. print(
  187. "\n --- shortest path kernel matrix of size %d built in %s seconds ---"
  188. % (len(Gn), run_time))
  189. return Kmatrix, run_time, idx
  190. def spkernel_do(g1, g2, ds_attrs, node_label, node_kernels):
  191. kernel = 0
  192. # compute shortest path matrices first, method borrowed from FCSP.
  193. vk_dict = {} # shortest path matrices dict
  194. if ds_attrs['node_labeled']:
  195. # node symb and non-synb labeled
  196. if ds_attrs['node_attr_dim'] > 0:
  197. kn = node_kernels['mix']
  198. for n1, n2 in product(
  199. g1.nodes(data=True), g2.nodes(data=True)):
  200. vk_dict[(n1[0], n2[0])] = kn(
  201. n1[1][node_label], n2[1][node_label],
  202. n1[1]['attributes'], n2[1]['attributes'])
  203. # node symb labeled
  204. else:
  205. kn = node_kernels['symb']
  206. for n1 in g1.nodes(data=True):
  207. for n2 in g2.nodes(data=True):
  208. vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
  209. n2[1][node_label])
  210. else:
  211. # node non-synb labeled
  212. if ds_attrs['node_attr_dim'] > 0:
  213. kn = node_kernels['nsymb']
  214. for n1 in g1.nodes(data=True):
  215. for n2 in g2.nodes(data=True):
  216. vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
  217. n2[1]['attributes'])
  218. # node unlabeled
  219. else:
  220. for e1, e2 in product(
  221. g1.edges(data=True), g2.edges(data=True)):
  222. if e1[2]['cost'] == e2[2]['cost']:
  223. kernel += 1
  224. return kernel
  225. # compute graph kernels
  226. if ds_attrs['is_directed']:
  227. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  228. if e1[2]['cost'] == e2[2]['cost']:
  229. nk11, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(e1[1],
  230. e2[1])]
  231. kn1 = nk11 * nk22
  232. kernel += kn1
  233. else:
  234. for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
  235. if e1[2]['cost'] == e2[2]['cost']:
  236. # each edge walk is counted twice, starting from both its extreme nodes.
  237. nk11, nk12, nk21, nk22 = vk_dict[(e1[0], e2[0])], vk_dict[(
  238. e1[0], e2[1])], vk_dict[(e1[1],
  239. e2[0])], vk_dict[(e1[1],
  240. e2[1])]
  241. kn1 = nk11 * nk22
  242. kn2 = nk12 * nk21
  243. kernel += kn1 + kn2
  244. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  245. # # compute vertex kernels
  246. # try:
  247. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  248. # nx.number_of_nodes(g2)))
  249. # g1nl = enumerate(g1.nodes(data=True))
  250. # g2nl = enumerate(g2.nodes(data=True))
  251. # for i1, n1 in g1nl:
  252. # for i2, n2 in g2nl:
  253. # vk_mat[i1][i2] = kn(
  254. # n1[1][node_label], n2[1][node_label],
  255. # [n1[1]['attributes']], [n2[1]['attributes']])
  256. # range1 = range(0, len(edge_w_g[i]))
  257. # range2 = range(0, len(edge_w_g[j]))
  258. # for i1 in range1:
  259. # x1 = edge_x_g[i][i1]
  260. # y1 = edge_y_g[i][i1]
  261. # w1 = edge_w_g[i][i1]
  262. # for i2 in range2:
  263. # x2 = edge_x_g[j][i2]
  264. # y2 = edge_y_g[j][i2]
  265. # w2 = edge_w_g[j][i2]
  266. # ke = (w1 == w2)
  267. # if ke > 0:
  268. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  269. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  270. # kernel += kn1 + kn2
  271. return kernel
  272. def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr):
  273. i = itr[0]
  274. j = itr[1]
  275. return i, j, spkernel_do(G_gn[i], G_gn[j], ds_attrs, node_label, node_kernels)
  276. #def wrapper_sp_do(ds_attrs, node_label, node_kernels, itr_item):
  277. # g1 = itr_item[0][0]
  278. # g2 = itr_item[0][1]
  279. # i = itr_item[1][0]
  280. # j = itr_item[1][1]
  281. # return i, j, spkernel_do(g1, g2, ds_attrs, node_label, node_kernels)
  282. def wrapper_getSPGraph(weight, itr_item):
  283. g = itr_item[0]
  284. i = itr_item[1]
  285. return i, getSPGraph(g, edge_weight=weight)
  286. # return i, nx.floyd_warshall_numpy(g, weight=weight)

A Python package for graph kernels, graph edit distances and graph pre-image problem.