You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

untildPathKernel.py 7.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. """
  2. @author: linlin
  3. @references: Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph kernels for chemical informatics. Neural networks, 18(8):1093–1110, 2005.
  4. """
  5. import sys
  6. import pathlib
  7. sys.path.insert(0, "../")
  8. import time
  9. import networkx as nx
  10. import numpy as np
  11. def untildpathkernel(*args, node_label = 'atom', edge_label = 'bond_type', labeled = True, depth = 10, k_func = 'tanimoto'):
  12. """Calculate path graph kernels up to depth d between graphs.
  13. Parameters
  14. ----------
  15. Gn : List of NetworkX graph
  16. List of graphs between which the kernels are calculated.
  17. /
  18. G1, G2 : NetworkX graphs
  19. 2 graphs between which the kernel is calculated.
  20. node_label : string
  21. node attribute used as label. The default node label is atom.
  22. edge_label : string
  23. edge attribute used as label. The default edge label is bond_type.
  24. labeled : boolean
  25. Whether the graphs are labeled. The default is True.
  26. depth : integer
  27. Depth of search. Longest length of paths.
  28. k_func : function
  29. A kernel function used using different notions of fingerprint similarity.
  30. Return
  31. ------
  32. Kmatrix : Numpy matrix
  33. Kernel matrix, each element of which is the path kernel up to d between 2 praphs.
  34. """
  35. depth = int(depth)
  36. if len(args) == 1: # for a list of graphs
  37. Gn = args[0]
  38. Kmatrix = np.zeros((len(Gn), len(Gn)))
  39. start_time = time.time()
  40. # get all paths of all graphs before calculating kernels to save time, but this may cost a lot of memory for large dataset.
  41. all_paths = [ find_all_paths_until_length(Gn[i], depth, node_label = node_label, edge_label = edge_label, labeled = labeled) for i in range(0, len(Gn)) ]
  42. for i in range(0, len(Gn)):
  43. for j in range(i, len(Gn)):
  44. Kmatrix[i][j] = _untildpathkernel_do(all_paths[i], all_paths[j], k_func, node_label = node_label, edge_label = edge_label, labeled = labeled)
  45. Kmatrix[j][i] = Kmatrix[i][j]
  46. run_time = time.time() - start_time
  47. print("\n --- kernel matrix of path kernel up to %d of size %d built in %s seconds ---" % (depth, len(Gn), run_time))
  48. return Kmatrix, run_time
  49. else: # for only 2 graphs
  50. start_time = time.time()
  51. all_paths1 = find_all_paths_until_length(args[0], depth, node_label = node_label, edge_label = edge_label, labeled = labeled)
  52. all_paths2 = find_all_paths_until_length(args[1], depth, node_label = node_label, edge_label = edge_label, labeled = labeled)
  53. kernel = _untildpathkernel_do(all_paths1, all_paths2, k_func, node_label = node_label, edge_label = edge_label, labeled = labeled)
  54. run_time = time.time() - start_time
  55. print("\n --- path kernel up to %d built in %s seconds ---" % (depth, run_time))
  56. return kernel, run_time
  57. def _untildpathkernel_do(paths1, paths2, k_func, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  58. """Calculate path graph kernels up to depth d between 2 graphs.
  59. Parameters
  60. ----------
  61. paths1, paths2 : list
  62. List of paths in 2 graphs, where for unlabeled graphs, each path is represented by a list of nodes; while for labeled graphs, each path is represented by a string consists of labels of nodes and edges on that path.
  63. k_func : function
  64. A kernel function used using different notions of fingerprint similarity.
  65. node_label : string
  66. node attribute used as label. The default node label is atom.
  67. edge_label : string
  68. edge attribute used as label. The default edge label is bond_type.
  69. labeled : boolean
  70. Whether the graphs are labeled. The default is True.
  71. Return
  72. ------
  73. kernel : float
  74. Treelet Kernel between 2 graphs.
  75. """
  76. all_paths = list(set(paths1 + paths2))
  77. if k_func == 'tanimoto':
  78. vector1 = [ (1 if path in paths1 else 0) for path in all_paths ]
  79. vector2 = [ (1 if path in paths2 else 0) for path in all_paths ]
  80. kernel_uv = np.dot(vector1, vector2)
  81. kernel = kernel_uv / (len(set(paths1)) + len(set(paths2)) - kernel_uv)
  82. else: # MinMax kernel
  83. path_count1 = Counter(paths1)
  84. path_count2 = Counter(paths2)
  85. vector1 = [ (path_count1[key] if (key in path_count1.keys()) else 0) for key in all_paths ]
  86. vector2 = [ (path_count2[key] if (key in path_count2.keys()) else 0) for key in all_paths ]
  87. kernel = np.sum(np.minimum(vector1, vector2)) / np.sum(np.maximum(vector1, vector2))
  88. return kernel
  89. # this method find paths repetively, it could be faster.
  90. def find_all_paths_until_length(G, length, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  91. """Find all paths with a certain maximum length in a graph. A recursive depth first search is applied.
  92. Parameters
  93. ----------
  94. G : NetworkX graphs
  95. The graph in which paths are searched.
  96. length : integer
  97. The maximum length of paths.
  98. node_label : string
  99. node attribute used as label. The default node label is atom.
  100. edge_label : string
  101. edge attribute used as label. The default edge label is bond_type.
  102. labeled : boolean
  103. Whether the graphs are labeled. The default is True.
  104. Return
  105. ------
  106. path : list
  107. List of paths retrieved, where for unlabeled graphs, each path is represented by a list of nodes; while for labeled graphs, each path is represented by a string consists of labels of nodes and edges on that path.
  108. """
  109. all_paths = []
  110. for i in range(0, length + 1):
  111. new_paths = find_all_paths(G, i)
  112. if new_paths == []:
  113. break
  114. all_paths.extend(new_paths)
  115. if labeled == True: # convert paths to strings
  116. path_strs = []
  117. for path in all_paths:
  118. strlist = [ G.node[node][node_label] + G[node][path[path.index(node) + 1]][edge_label] for node in path[:-1] ]
  119. path_strs.append(''.join(strlist) + G.node[path[-1]][node_label])
  120. return path_strs
  121. return all_paths
  122. def find_paths(G, source_node, length):
  123. """Find all paths with a certain length those start from a source node. A recursive depth first search is applied.
  124. Parameters
  125. ----------
  126. G : NetworkX graphs
  127. The graph in which paths are searched.
  128. source_node : integer
  129. The number of the node from where all paths start.
  130. length : integer
  131. The length of paths.
  132. Return
  133. ------
  134. path : list of list
  135. List of paths retrieved, where each path is represented by a list of nodes.
  136. """
  137. return [[source_node]] if length == 0 else \
  138. [ [source_node] + path for neighbor in G[source_node] \
  139. for path in find_paths(G, neighbor, length - 1) if source_node not in path ]
  140. def find_all_paths(G, length):
  141. """Find all paths with a certain length in a graph. A recursive depth first search is applied.
  142. Parameters
  143. ----------
  144. G : NetworkX graphs
  145. The graph in which paths are searched.
  146. length : integer
  147. The length of paths.
  148. Return
  149. ------
  150. path : list of list
  151. List of paths retrieved, where each path is represented by a list of nodes.
  152. """
  153. all_paths = []
  154. for node in G:
  155. all_paths.extend(find_paths(G, node, length))
  156. ### The following process is not carried out according to the original article
  157. # all_paths_r = [ path[::-1] for path in all_paths ]
  158. # # For each path, two presentation are retrieved from its two extremities. Remove one of them.
  159. # for idx, path in enumerate(all_paths[:-1]):
  160. # for path2 in all_paths_r[idx+1::]:
  161. # if path == path2:
  162. # all_paths[idx] = []
  163. # break
  164. # return list(filter(lambda a: a != [], all_paths))
  165. return all_paths

A Python package for graph kernels, graph edit distances and graph pre-image problem.