You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_structuralspkernel.py 4.8 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Sep 28 16:37:29 2018
  5. @author: ljia
  6. """
  7. import functools
  8. from libs import *
  9. import multiprocessing
  10. from pygraph.kernels.structuralspKernel import structuralspkernel
  11. from pygraph.utils.kernels import deltakernel, gaussiankernel, kernelproduct
  12. dslist = [
  13. {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  14. 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'},
  15. # contains single node graph, node symb
  16. {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
  17. 'task': 'regression'}, # node symb
  18. {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb
  19. {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled
  20. {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb
  21. {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  22. # node nsymb
  23. {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  24. {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb
  25. {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb
  26. # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  27. # # node symb/nsymb
  28. # {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb
  29. #
  30. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
  31. # # node/edge symb
  32. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  33. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  34. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  35. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  36. #
  37. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  38. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  39. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  40. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  41. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  42. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  43. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  44. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  45. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  46. # # not working below
  47. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  48. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  49. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  50. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  51. ]
  52. estimator = structuralspkernel
  53. ## for non-symbolic labels.
  54. #gkernels = [functools.partial(gaussiankernel, gamma=1 / ga)
  55. # for ga in np.logspace(0, 10, num=11, base=10)]
  56. #mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels]
  57. #sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]}
  58. # for i in range(len(gkernels))]
  59. # for symbolic labels only.
  60. #gaussiankernel = functools.partial(gaussiankernel, gamma=0.5)
  61. mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel)
  62. sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]
  63. param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels,
  64. 'compute_method': ['naive']}
  65. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  66. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  67. for ds in dslist:
  68. print()
  69. print(ds['name'])
  70. model_selection_for_precomputed_kernel(
  71. ds['dataset'],
  72. estimator,
  73. param_grid_precomputed,
  74. (param_grid[1] if ('task' in ds and ds['task']
  75. == 'regression') else param_grid[0]),
  76. (ds['task'] if 'task' in ds else 'classification'),
  77. NUM_TRIALS=30,
  78. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  79. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  80. ds_name=ds['name'],
  81. n_jobs=multiprocessing.cpu_count(),
  82. read_gm_from_file=False,
  83. verbose=True)
  84. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.