You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

structuralspKernel.py 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Sep 27 10:56:23 2018
  5. @author: linlin
  6. @references: Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
  7. Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
  8. """
  9. import sys
  10. import time
  11. from itertools import combinations, product
  12. from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import networkx as nx
  16. import numpy as np
  17. from pygraph.utils.graphdataset import get_dataset_attributes
  18. from pygraph.utils.parallel import parallel_gm
  19. from pygraph.utils.trie import Trie
  20. sys.path.insert(0, "../")
  21. def structuralspkernel(*args,
  22. node_label='atom',
  23. edge_weight=None,
  24. edge_label='bond_type',
  25. node_kernels=None,
  26. edge_kernels=None,
  27. compute_method='naive',
  28. n_jobs=None,
  29. verbose=True):
  30. """Calculate mean average structural shortest path kernels between graphs.
  31. Parameters
  32. ----------
  33. Gn : List of NetworkX graph
  34. List of graphs between which the kernels are calculated.
  35. /
  36. G1, G2 : NetworkX graphs
  37. Two graphs between which the kernel is calculated.
  38. node_label : string
  39. Node attribute used as label. The default node label is atom.
  40. edge_weight : string
  41. Edge attribute name corresponding to the edge weight. Applied for the
  42. computation of the shortest paths.
  43. edge_label : string
  44. Edge attribute used as label. The default edge label is bond_type.
  45. node_kernels : dict
  46. A dictionary of kernel functions for nodes, including 3 items: 'symb'
  47. for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
  48. for both labels. The first 2 functions take two node labels as
  49. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  50. non-symbolic label for each the two nodes. Each label is in form of 2-D
  51. dimension array (n_samples, n_features). Each function returns a number
  52. as the kernel value. Ignored when nodes are unlabeled.
  53. edge_kernels : dict
  54. A dictionary of kernel functions for edges, including 3 items: 'symb'
  55. for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix'
  56. for both labels. The first 2 functions take two edge labels as
  57. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  58. non-symbolic label for each the two edges. Each label is in form of 2-D
  59. dimension array (n_samples, n_features). Each function returns a number
  60. as the kernel value. Ignored when edges are unlabeled.
  61. compute_method : string
  62. Computation method to store the shortest paths and compute the graph
  63. kernel. The Following choices are available:
  64. 'trie': store paths as tries.
  65. 'naive': store paths to lists.
  66. n_jobs : int
  67. Number of jobs for parallelization.
  68. Return
  69. ------
  70. Kmatrix : Numpy matrix
  71. Kernel matrix, each element of which is the mean average structural
  72. shortest path kernel between 2 praphs.
  73. """
  74. # pre-process
  75. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  76. Gn = [g.copy() for g in Gn]
  77. weight = None
  78. if edge_weight is None:
  79. if verbose:
  80. print('\n None edge weight specified. Set all weight to 1.\n')
  81. else:
  82. try:
  83. some_weight = list(
  84. nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
  85. if isinstance(some_weight, (float, int)):
  86. weight = edge_weight
  87. else:
  88. if verbose:
  89. print(
  90. '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
  91. % edge_weight)
  92. except:
  93. if verbose:
  94. print(
  95. '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
  96. % edge_weight)
  97. ds_attrs = get_dataset_attributes(
  98. Gn,
  99. attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled',
  100. 'edge_attr_dim', 'is_directed'],
  101. node_label=node_label, edge_label=edge_label)
  102. start_time = time.time()
  103. # get shortest paths of each graph in Gn
  104. splist = [None] * len(Gn)
  105. pool = Pool(n_jobs)
  106. itr = zip(Gn, range(0, len(Gn)))
  107. if len(Gn) < 100 * n_jobs:
  108. chunksize = int(len(Gn) / n_jobs) + 1
  109. else:
  110. chunksize = 100
  111. # get shortest path graphs of Gn
  112. if compute_method == 'trie':
  113. getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed'])
  114. else:
  115. getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed'])
  116. if verbose:
  117. iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize),
  118. desc='getting shortest paths', file=sys.stdout)
  119. else:
  120. iterator = pool.imap_unordered(getsp_partial, itr, chunksize)
  121. for i, sp in iterator:
  122. splist[i] = sp
  123. # time.sleep(10)
  124. pool.close()
  125. pool.join()
  126. # ss = 0
  127. # ss += sys.getsizeof(splist)
  128. # for spss in splist:
  129. # ss += sys.getsizeof(spss)
  130. # for spp in spss:
  131. # ss += sys.getsizeof(spp)
  132. # time.sleep(20)
  133. # # ---- direct running, normally use single CPU core. ----
  134. # splist = []
  135. # if compute_method == 'trie':
  136. # for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout):
  137. # splist.append(get_sps_as_trie(g, weight, ds_attrs['is_directed']))
  138. # else:
  139. # for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout):
  140. # splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed']))
  141. # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
  142. # sp_ml = [0] * len(Gn) # shortest path matrices
  143. # for i in result_sp:
  144. # sp_ml[i[0]] = i[1]
  145. # edge_x_g = [[] for i in range(len(sp_ml))]
  146. # edge_y_g = [[] for i in range(len(sp_ml))]
  147. # edge_w_g = [[] for i in range(len(sp_ml))]
  148. # for idx, item in enumerate(sp_ml):
  149. # for i1 in range(len(item)):
  150. # for i2 in range(i1 + 1, len(item)):
  151. # if item[i1, i2] != np.inf:
  152. # edge_x_g[idx].append(i1)
  153. # edge_y_g[idx].append(i2)
  154. # edge_w_g[idx].append(item[i1, i2])
  155. # print(len(edge_x_g[0]))
  156. # print(len(edge_y_g[0]))
  157. # print(len(edge_w_g[0]))
  158. Kmatrix = np.zeros((len(Gn), len(Gn)))
  159. # ---- use pool.imap_unordered to parallel and track progress. ----
  160. def init_worker(spl_toshare, gs_toshare):
  161. global G_spl, G_gs
  162. G_spl = spl_toshare
  163. G_gs = gs_toshare
  164. if compute_method == 'trie':
  165. do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label,
  166. node_kernels, edge_kernels)
  167. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  168. glbv=(splist, Gn), n_jobs=n_jobs, verbose=verbose)
  169. else:
  170. do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  171. node_kernels, edge_kernels)
  172. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  173. glbv=(splist, Gn), n_jobs=n_jobs, verbose=verbose)
  174. # # ---- use pool.map to parallel. ----
  175. # pool = Pool(n_jobs)
  176. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  177. # node_kernels, edge_kernels)
  178. # itr = zip(combinations_with_replacement(Gn, 2),
  179. # combinations_with_replacement(splist, 2),
  180. # combinations_with_replacement(range(0, len(Gn)), 2))
  181. # for i, j, kernel in tqdm(
  182. # pool.map(do_partial, itr), desc='calculating kernels',
  183. # file=sys.stdout):
  184. # Kmatrix[i][j] = kernel
  185. # Kmatrix[j][i] = kernel
  186. # pool.close()
  187. # pool.join()
  188. # # ---- use pool.imap_unordered to parallel and track progress. ----
  189. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  190. # node_kernels, edge_kernels)
  191. # itr = zip(combinations_with_replacement(Gn, 2),
  192. # combinations_with_replacement(splist, 2),
  193. # combinations_with_replacement(range(0, len(Gn)), 2))
  194. # len_itr = int(len(Gn) * (len(Gn) + 1) / 2)
  195. # if len_itr < 1000 * n_jobs:
  196. # chunksize = int(len_itr / n_jobs) + 1
  197. # else:
  198. # chunksize = 1000
  199. # from contextlib import closing
  200. # with closing(Pool(n_jobs)) as pool:
  201. # for i, j, kernel in tqdm(
  202. # pool.imap_unordered(do_partial, itr, 1000),
  203. # desc='calculating kernels',
  204. # file=sys.stdout):
  205. # Kmatrix[i][j] = kernel
  206. # Kmatrix[j][i] = kernel
  207. # pool.close()
  208. # pool.join()
  209. # # ---- direct running, normally use single CPU core. ----
  210. # from itertools import combinations_with_replacement
  211. # itr = combinations_with_replacement(range(0, len(Gn)), 2)
  212. # if compute_method == 'trie':
  213. # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
  214. # kernel = ssp_do_trie(Gn[i], Gn[j], splist[i], splist[j],
  215. # ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  216. # Kmatrix[i][j] = kernel
  217. # Kmatrix[j][i] = kernel
  218. # else:
  219. # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
  220. # kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j],
  221. # ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  222. # # if(kernel > 1):
  223. # # print("error here ")
  224. # Kmatrix[i][j] = kernel
  225. # Kmatrix[j][i] = kernel
  226. run_time = time.time() - start_time
  227. if verbose:
  228. print("\n --- shortest path kernel matrix of size %d built in %s seconds ---"
  229. % (len(Gn), run_time))
  230. return Kmatrix, run_time
  231. def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label,
  232. node_kernels, edge_kernels):
  233. kernel = 0
  234. # First, compute shortest path matrices, method borrowed from FCSP.
  235. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  236. # Then, compute kernels between all pairs of edges, which is an idea of
  237. # extension of FCSP. It suits sparse graphs, which is the most case we
  238. # went though. For dense graphs, this would be slow.
  239. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  240. # compute graph kernels
  241. if vk_dict:
  242. if ek_dict:
  243. for p1, p2 in product(spl1, spl2):
  244. if len(p1) == len(p2):
  245. kpath = vk_dict[(p1[0], p2[0])]
  246. if kpath:
  247. for idx in range(1, len(p1)):
  248. kpath *= vk_dict[(p1[idx], p2[idx])] * \
  249. ek_dict[((p1[idx-1], p1[idx]),
  250. (p2[idx-1], p2[idx]))]
  251. if not kpath:
  252. break
  253. kernel += kpath # add up kernels of all paths
  254. else:
  255. for p1, p2 in product(spl1, spl2):
  256. if len(p1) == len(p2):
  257. kpath = vk_dict[(p1[0], p2[0])]
  258. if kpath:
  259. for idx in range(1, len(p1)):
  260. kpath *= vk_dict[(p1[idx], p2[idx])]
  261. if not kpath:
  262. break
  263. kernel += kpath # add up kernels of all paths
  264. else:
  265. if ek_dict:
  266. for p1, p2 in product(spl1, spl2):
  267. if len(p1) == len(p2):
  268. if len(p1) == 0:
  269. kernel += 1
  270. else:
  271. kpath = 1
  272. for idx in range(0, len(p1) - 1):
  273. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  274. (p2[idx], p2[idx+1]))]
  275. if not kpath:
  276. break
  277. kernel += kpath # add up kernels of all paths
  278. else:
  279. for p1, p2 in product(spl1, spl2):
  280. if len(p1) == len(p2):
  281. kernel += 1
  282. kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
  283. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  284. # # compute vertex kernel matrix
  285. # try:
  286. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  287. # nx.number_of_nodes(g2)))
  288. # g1nl = enumerate(g1.nodes(data=True))
  289. # g2nl = enumerate(g2.nodes(data=True))
  290. # for i1, n1 in g1nl:
  291. # for i2, n2 in g2nl:
  292. # vk_mat[i1][i2] = kn(
  293. # n1[1][node_label], n2[1][node_label],
  294. # [n1[1]['attributes']], [n2[1]['attributes']])
  295. # range1 = range(0, len(edge_w_g[i]))
  296. # range2 = range(0, len(edge_w_g[j]))
  297. # for i1 in range1:
  298. # x1 = edge_x_g[i][i1]
  299. # y1 = edge_y_g[i][i1]
  300. # w1 = edge_w_g[i][i1]
  301. # for i2 in range2:
  302. # x2 = edge_x_g[j][i2]
  303. # y2 = edge_y_g[j][i2]
  304. # w2 = edge_w_g[j][i2]
  305. # ke = (w1 == w2)
  306. # if ke > 0:
  307. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  308. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  309. # Kmatrix += kn1 + kn2
  310. return kernel
  311. def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels,
  312. edge_kernels, itr):
  313. i = itr[0]
  314. j = itr[1]
  315. return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j],
  316. ds_attrs, node_label, edge_label,
  317. node_kernels, edge_kernels)
  318. def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label,
  319. node_kernels, edge_kernels):
  320. # # traverse all paths in graph1. Deep-first search is applied.
  321. # def traverseBothTrie(root, trie2, kernel, pcurrent=[]):
  322. # for key, node in root['children'].items():
  323. # pcurrent.append(key)
  324. # if node['isEndOfWord']:
  325. # # print(node['count'])
  326. # traverseTrie2(trie2.root, pcurrent, kernel,
  327. # pcurrent=[])
  328. # if node['children'] != {}:
  329. # traverseBothTrie(node, trie2, kernel, pcurrent)
  330. # else:
  331. # del pcurrent[-1]
  332. # if pcurrent != []:
  333. # del pcurrent[-1]
  334. #
  335. #
  336. # # traverse all paths in graph2 and find out those that are not in
  337. # # graph1. Deep-first search is applied.
  338. # def traverseTrie2(root, p1, kernel, pcurrent=[]):
  339. # for key, node in root['children'].items():
  340. # pcurrent.append(key)
  341. # if node['isEndOfWord']:
  342. # # print(node['count'])
  343. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  344. # if node['children'] != {}:
  345. # traverseTrie2(node, p1, kernel, pcurrent)
  346. # else:
  347. # del pcurrent[-1]
  348. # if pcurrent != []:
  349. # del pcurrent[-1]
  350. #
  351. #
  352. # kernel = [0]
  353. #
  354. # # First, compute shortest path matrices, method borrowed from FCSP.
  355. # vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  356. # # Then, compute kernels between all pairs of edges, which is an idea of
  357. # # extension of FCSP. It suits sparse graphs, which is the most case we
  358. # # went though. For dense graphs, this would be slow.
  359. # ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  360. #
  361. # # compute graph kernels
  362. # traverseBothTrie(trie1[0].root, trie2[0], kernel)
  363. #
  364. # kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  365. # # traverse all paths in graph1. Deep-first search is applied.
  366. # def traverseBothTrie(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  367. # for key, node in root['children'].items():
  368. # pcurrent.append(key)
  369. # if node['isEndOfWord']:
  370. # # print(node['count'])
  371. # traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  372. # pcurrent=[])
  373. # if node['children'] != {}:
  374. # traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  375. # else:
  376. # del pcurrent[-1]
  377. # if pcurrent != []:
  378. # del pcurrent[-1]
  379. #
  380. #
  381. # # traverse all paths in graph2 and find out those that are not in
  382. # # graph1. Deep-first search is applied.
  383. # def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  384. # for key, node in root['children'].items():
  385. # pcurrent.append(key)
  386. # if node['isEndOfWord']:
  387. # # print(node['count'])
  388. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  389. # if node['children'] != {}:
  390. # traverseTrie2(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  391. # else:
  392. # del pcurrent[-1]
  393. # if pcurrent != []:
  394. # del pcurrent[-1]
  395. kernel = [0]
  396. # First, compute shortest path matrices, method borrowed from FCSP.
  397. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  398. # Then, compute kernels between all pairs of edges, which is an idea of
  399. # extension of FCSP. It suits sparse graphs, which is the most case we
  400. # went though. For dense graphs, this would be slow.
  401. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  402. # compute graph kernels
  403. # traverseBothTrie(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  404. if vk_dict:
  405. if ek_dict:
  406. traverseBothTriem(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  407. else:
  408. traverseBothTriev(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  409. else:
  410. if ek_dict:
  411. traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  412. else:
  413. traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  414. kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  415. return kernel
  416. def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels,
  417. edge_kernels, itr):
  418. i = itr[0]
  419. j = itr[1]
  420. return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs,
  421. node_label, edge_label, node_kernels, edge_kernels)
  422. def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs):
  423. # compute shortest path matrices, method borrowed from FCSP.
  424. vk_dict = {} # shortest path matrices dict
  425. if ds_attrs['node_labeled']:
  426. # node symb and non-synb labeled
  427. if ds_attrs['node_attr_dim'] > 0:
  428. kn = node_kernels['mix']
  429. for n1, n2 in product(
  430. g1.nodes(data=True), g2.nodes(data=True)):
  431. vk_dict[(n1[0], n2[0])] = kn(
  432. n1[1][node_label], n2[1][node_label],
  433. n1[1]['attributes'], n2[1]['attributes'])
  434. # node symb labeled
  435. else:
  436. kn = node_kernels['symb']
  437. for n1 in g1.nodes(data=True):
  438. for n2 in g2.nodes(data=True):
  439. vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
  440. n2[1][node_label])
  441. else:
  442. # node non-synb labeled
  443. if ds_attrs['node_attr_dim'] > 0:
  444. kn = node_kernels['nsymb']
  445. for n1 in g1.nodes(data=True):
  446. for n2 in g2.nodes(data=True):
  447. vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
  448. n2[1]['attributes'])
  449. # node unlabeled
  450. else:
  451. pass
  452. return vk_dict
  453. def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs):
  454. # compute kernels between all pairs of edges, which is an idea of
  455. # extension of FCSP. It suits sparse graphs, which is the most case we
  456. # went though. For dense graphs, this would be slow.
  457. ek_dict = {} # dict of edge kernels
  458. if ds_attrs['edge_labeled']:
  459. # edge symb and non-synb labeled
  460. if ds_attrs['edge_attr_dim'] > 0:
  461. ke = edge_kernels['mix']
  462. for e1, e2 in product(
  463. g1.edges(data=True), g2.edges(data=True)):
  464. ek_temp = ke(e1[2][edge_label], e2[2][edge_label],
  465. e1[2]['attributes'], e2[2]['attributes'])
  466. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  467. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  468. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  469. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  470. # edge symb labeled
  471. else:
  472. ke = edge_kernels['symb']
  473. for e1 in g1.edges(data=True):
  474. for e2 in g2.edges(data=True):
  475. ek_temp = ke(e1[2][edge_label], e2[2][edge_label])
  476. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  477. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  478. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  479. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  480. else:
  481. # edge non-synb labeled
  482. if ds_attrs['edge_attr_dim'] > 0:
  483. ke = edge_kernels['nsymb']
  484. for e1 in g1.edges(data=True):
  485. for e2 in g2.edges(data=True):
  486. ek_temp = ke(e1[2]['attributes'], e2[2]['attributes'])
  487. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  488. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  489. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  490. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  491. # edge unlabeled
  492. else:
  493. pass
  494. return ek_dict
  495. # traverse all paths in graph1. Deep-first search is applied.
  496. def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  497. for key, node in root['children'].items():
  498. pcurrent.append(key)
  499. if node['isEndOfWord']:
  500. # print(node['count'])
  501. traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  502. pcurrent=[])
  503. if node['children'] != {}:
  504. traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  505. else:
  506. del pcurrent[-1]
  507. if pcurrent != []:
  508. del pcurrent[-1]
  509. # traverse all paths in graph2 and find out those that are not in
  510. # graph1. Deep-first search is applied.
  511. def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  512. for key, node in root['children'].items():
  513. pcurrent.append(key)
  514. if node['isEndOfWord']:
  515. # print(node['count'])
  516. if len(p1) == len(pcurrent):
  517. kpath = vk_dict[(p1[0], pcurrent[0])]
  518. if kpath:
  519. for idx in range(1, len(p1)):
  520. kpath *= vk_dict[(p1[idx], pcurrent[idx])] * \
  521. ek_dict[((p1[idx-1], p1[idx]),
  522. (pcurrent[idx-1], pcurrent[idx]))]
  523. if not kpath:
  524. break
  525. kernel[0] += kpath # add up kernels of all paths
  526. if node['children'] != {}:
  527. traverseTrie2m(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  528. else:
  529. del pcurrent[-1]
  530. if pcurrent != []:
  531. del pcurrent[-1]
  532. # traverse all paths in graph1. Deep-first search is applied.
  533. def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  534. for key, node in root['children'].items():
  535. pcurrent.append(key)
  536. if node['isEndOfWord']:
  537. # print(node['count'])
  538. traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  539. pcurrent=[])
  540. if node['children'] != {}:
  541. traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  542. else:
  543. del pcurrent[-1]
  544. if pcurrent != []:
  545. del pcurrent[-1]
  546. # traverse all paths in graph2 and find out those that are not in
  547. # graph1. Deep-first search is applied.
  548. def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  549. for key, node in root['children'].items():
  550. pcurrent.append(key)
  551. if node['isEndOfWord']:
  552. # print(node['count'])
  553. if len(p1) == len(pcurrent):
  554. kpath = vk_dict[(p1[0], pcurrent[0])]
  555. if kpath:
  556. for idx in range(1, len(p1)):
  557. kpath *= vk_dict[(p1[idx], pcurrent[idx])]
  558. if not kpath:
  559. break
  560. kernel[0] += kpath # add up kernels of all paths
  561. if node['children'] != {}:
  562. traverseTrie2v(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  563. else:
  564. del pcurrent[-1]
  565. if pcurrent != []:
  566. del pcurrent[-1]
  567. # traverse all paths in graph1. Deep-first search is applied.
  568. def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  569. for key, node in root['children'].items():
  570. pcurrent.append(key)
  571. if node['isEndOfWord']:
  572. # print(node['count'])
  573. traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  574. pcurrent=[])
  575. if node['children'] != {}:
  576. traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  577. else:
  578. del pcurrent[-1]
  579. if pcurrent != []:
  580. del pcurrent[-1]
  581. # traverse all paths in graph2 and find out those that are not in
  582. # graph1. Deep-first search is applied.
  583. def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  584. for key, node in root['children'].items():
  585. pcurrent.append(key)
  586. if node['isEndOfWord']:
  587. # print(node['count'])
  588. if len(p1) == len(pcurrent):
  589. if len(p1) == 0:
  590. kernel += 1
  591. else:
  592. kpath = 1
  593. for idx in range(0, len(p1) - 1):
  594. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  595. (pcurrent[idx], pcurrent[idx+1]))]
  596. if not kpath:
  597. break
  598. kernel[0] += kpath # add up kernels of all paths
  599. if node['children'] != {}:
  600. traverseTrie2e(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  601. else:
  602. del pcurrent[-1]
  603. if pcurrent != []:
  604. del pcurrent[-1]
  605. # traverse all paths in graph1. Deep-first search is applied.
  606. def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  607. for key, node in root['children'].items():
  608. pcurrent.append(key)
  609. if node['isEndOfWord']:
  610. # print(node['count'])
  611. traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  612. pcurrent=[])
  613. if node['children'] != {}:
  614. traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  615. else:
  616. del pcurrent[-1]
  617. if pcurrent != []:
  618. del pcurrent[-1]
  619. # traverse all paths in graph2 and find out those that are not in
  620. # graph1. Deep-first search is applied.
  621. def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  622. for key, node in root['children'].items():
  623. pcurrent.append(key)
  624. if node['isEndOfWord']:
  625. # print(node['count'])
  626. if len(p1) == len(pcurrent):
  627. kernel[0] += 1
  628. if node['children'] != {}:
  629. traverseTrie2u(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  630. else:
  631. del pcurrent[-1]
  632. if pcurrent != []:
  633. del pcurrent[-1]
  634. #def computePathKernel(p1, p2, vk_dict, ek_dict):
  635. # kernel = 0
  636. # if vk_dict:
  637. # if ek_dict:
  638. # if len(p1) == len(p2):
  639. # kpath = vk_dict[(p1[0], p2[0])]
  640. # if kpath:
  641. # for idx in range(1, len(p1)):
  642. # kpath *= vk_dict[(p1[idx], p2[idx])] * \
  643. # ek_dict[((p1[idx-1], p1[idx]),
  644. # (p2[idx-1], p2[idx]))]
  645. # if not kpath:
  646. # break
  647. # kernel += kpath # add up kernels of all paths
  648. # else:
  649. # if len(p1) == len(p2):
  650. # kpath = vk_dict[(p1[0], p2[0])]
  651. # if kpath:
  652. # for idx in range(1, len(p1)):
  653. # kpath *= vk_dict[(p1[idx], p2[idx])]
  654. # if not kpath:
  655. # break
  656. # kernel += kpath # add up kernels of all paths
  657. # else:
  658. # if ek_dict:
  659. # if len(p1) == len(p2):
  660. # if len(p1) == 0:
  661. # kernel += 1
  662. # else:
  663. # kpath = 1
  664. # for idx in range(0, len(p1) - 1):
  665. # kpath *= ek_dict[((p1[idx], p1[idx+1]),
  666. # (p2[idx], p2[idx+1]))]
  667. # if not kpath:
  668. # break
  669. # kernel += kpath # add up kernels of all paths
  670. # else:
  671. # if len(p1) == len(p2):
  672. # kernel += 1
  673. #
  674. # return kernel
  675. def get_shortest_paths(G, weight, directed):
  676. """Get all shortest paths of a graph.
  677. Parameters
  678. ----------
  679. G : NetworkX graphs
  680. The graphs whose paths are calculated.
  681. weight : string/None
  682. edge attribute used as weight to calculate the shortest path.
  683. directed: boolean
  684. Whether graph is directed.
  685. Return
  686. ------
  687. sp : list of list
  688. List of shortest paths of the graph, where each path is represented by a list of nodes.
  689. """
  690. sp = []
  691. for n1, n2 in combinations(G.nodes(), 2):
  692. try:
  693. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  694. except nx.NetworkXNoPath: # nodes not connected
  695. # sp.append([])
  696. pass
  697. else:
  698. sp += spltemp
  699. # each edge walk is counted twice, starting from both its extreme nodes.
  700. if not directed:
  701. sp += [sptemp[::-1] for sptemp in spltemp]
  702. # add single nodes as length 0 paths.
  703. sp += [[n] for n in G.nodes()]
  704. return sp
  705. def wrapper_getSP_naive(weight, directed, itr_item):
  706. g = itr_item[0]
  707. i = itr_item[1]
  708. return i, get_shortest_paths(g, weight, directed)
  709. def get_sps_as_trie(G, weight, directed):
  710. """Get all shortest paths of a graph and insert them into a trie.
  711. Parameters
  712. ----------
  713. G : NetworkX graphs
  714. The graphs whose paths are calculated.
  715. weight : string/None
  716. edge attribute used as weight to calculate the shortest path.
  717. directed: boolean
  718. Whether graph is directed.
  719. Return
  720. ------
  721. sp : list of list
  722. List of shortest paths of the graph, where each path is represented by a list of nodes.
  723. """
  724. sptrie = Trie()
  725. lensp = 0
  726. for n1, n2 in combinations(G.nodes(), 2):
  727. try:
  728. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  729. except nx.NetworkXNoPath: # nodes not connected
  730. pass
  731. else:
  732. lensp += len(spltemp)
  733. if not directed:
  734. lensp += len(spltemp)
  735. for sp in spltemp:
  736. sptrie.insertWord(sp)
  737. # each edge walk is counted twice, starting from both its extreme nodes.
  738. if not directed:
  739. sptrie.insertWord(sp[::-1])
  740. # add single nodes as length 0 paths.
  741. for n in G.nodes():
  742. sptrie.insertWord([n])
  743. return sptrie, lensp + nx.number_of_nodes(G)
  744. def wrapper_getSP_trie(weight, directed, itr_item):
  745. g = itr_item[0]
  746. i = itr_item[1]
  747. return i, get_sps_as_trie(g, weight, directed)

A Python package for graph kernels, graph edit distances and graph pre-image problem.