You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_untilhpathkernel.py 4.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri Oct 5 19:19:33 2018
  5. @author: ljia
  6. """
  7. import functools
  8. from libs import *
  9. import multiprocessing
  10. from sklearn.metrics.pairwise import rbf_kernel
  11. from pygraph.kernels.untilHPathKernel import untilhpathkernel
  12. from pygraph.utils.kernels import deltakernel, kernelproduct
  13. dslist = [
  14. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
  15. # 'task': 'regression'}, # node symb
  16. # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  17. # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt', }, # contains single node graph, node symb
  18. # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds', }, # node/edge symb
  19. # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds', }, # unlabeled
  20. # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  21. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
  22. # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  23. # # node symb/nsymb
  24. {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  25. # node/edge symb
  26. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
  27. # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  28. # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
  29. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  30. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  31. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  32. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  33. #
  34. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  35. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  36. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  37. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  38. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  39. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  40. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  41. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  42. # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  43. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  44. # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  45. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  46. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  47. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  48. # # not working below
  49. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  50. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  51. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  52. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  53. ]
  54. estimator = untilhpathkernel
  55. mixkernel = functools.partial(kernelproduct, deltakernel, rbf_kernel)
  56. param_grid_precomputed = {'depth': np.linspace(7, 10, 10),
  57. 'k_func': ['tanimoto', 'MinMax']}
  58. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  59. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  60. for ds in dslist:
  61. print()
  62. print(ds['name'])
  63. model_selection_for_precomputed_kernel(
  64. ds['dataset'],
  65. estimator,
  66. param_grid_precomputed,
  67. (param_grid[1] if ('task' in ds and ds['task']
  68. == 'regression') else param_grid[0]),
  69. (ds['task'] if 'task' in ds else 'classification'),
  70. NUM_TRIALS=30,
  71. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  72. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  73. ds_name=ds['name'],
  74. n_jobs=multiprocessing.cpu_count(),
  75. read_gm_from_file=False)
  76. print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.