You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

results.md 2.5 kB

123456789101112131415161718192021222324252627282930313233343536
  1. # results with minimal test RMSE for each kernel on dataset Asyclic
  2. -- All the kernels are tested on dataset Asyclic, which consists of 185 molecules (graphs).
  3. -- The criteria used for prediction are SVM for classification and kernel Ridge regression for regression.
  4. -- For predition we randomly divide the data in train and test subset, where 90% of entire dataset is for training and rest for testing. 10 splits are performed. For each split, we first train on the train data, then evaluate the performance on the test set. We choose the optimal parameters for the test set and finally provide the corresponding performance. The final results correspond to the average of the performances on the test sets.
  5. ## summary
  6. | Kernels | RMSE(℃) | std(℃) | parameter | k_time |
  7. |---------------|:---------:|:--------:|-------------:|-------:|
  8. | shortest path | 36.40 | 5.35 | - | - |
  9. | marginalized | 17.90 | 6.59 | p_quit = 0.1 | - |
  10. | path | 14.27 | 6.37 | - | - |
  11. | WL subtree | 9.00 | 6.37 | height = 1 | 0.85" |
  12. **In each line, paremeter is the one with which the kenrel achieves the best results.
  13. In each line, k_time is the time spent on building the kernel matrix.**
  14. ## detailed results of WL subtree kernel.
  15. The table below shows the results of the WL subtree under different subtree heights.
  16. ```
  17. height RMSE_test std_test RMSE_train std_train k_time
  18. -------- ----------- ---------- ------------ ----------- --------
  19. 0 36.2108 7.33179 141.419 1.08284 0.392911
  20. 1 9.00098 6.37145 140.065 0.877976 0.812077
  21. 2 19.8113 4.04911 140.075 0.928821 1.36955
  22. 3 25.0455 4.94276 140.198 0.873857 1.78629
  23. 4 28.2255 6.5212 140.272 0.838915 2.30847
  24. 5 30.6354 6.73647 140.247 0.86363 2.8258
  25. 6 32.1027 6.85601 140.239 0.872475 3.1542
  26. 7 32.9709 6.89606 140.094 0.917704 3.46081
  27. 8 33.5112 6.90753 140.076 0.931866 4.08857
  28. 9 33.8502 6.91427 139.913 0.928974 4.25243
  29. 10 34.0963 6.93115 139.894 0.942612 5.02607
  30. ```
  31. **The unit of the *RMSEs* and *stds* is *℃*, The unit of the *k_time* is *s*.
  32. k_time is the time spent on building the kernel matrix.**

A Python package for graph kernels, graph edit distances and graph pre-image problem.