You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

structuralspKernel.py 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Sep 27 10:56:23 2018
  5. @author: linlin
  6. @references: Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
  7. Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
  8. """
  9. import sys
  10. import time
  11. from itertools import combinations, product
  12. from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import networkx as nx
  16. import numpy as np
  17. from pygraph.utils.graphdataset import get_dataset_attributes
  18. from pygraph.utils.parallel import parallel_gm
  19. from pygraph.utils.trie import Trie
  20. sys.path.insert(0, "../")
  21. def structuralspkernel(*args,
  22. node_label='atom',
  23. edge_weight=None,
  24. edge_label='bond_type',
  25. node_kernels=None,
  26. edge_kernels=None,
  27. compute_method='naive',
  28. # parallel='imap_unordered',
  29. parallel=None,
  30. n_jobs=None,
  31. verbose=True):
  32. """Calculate mean average structural shortest path kernels between graphs.
  33. Parameters
  34. ----------
  35. Gn : List of NetworkX graph
  36. List of graphs between which the kernels are calculated.
  37. /
  38. G1, G2 : NetworkX graphs
  39. Two graphs between which the kernel is calculated.
  40. node_label : string
  41. Node attribute used as label. The default node label is atom.
  42. edge_weight : string
  43. Edge attribute name corresponding to the edge weight. Applied for the
  44. computation of the shortest paths.
  45. edge_label : string
  46. Edge attribute used as label. The default edge label is bond_type.
  47. node_kernels : dict
  48. A dictionary of kernel functions for nodes, including 3 items: 'symb'
  49. for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
  50. for both labels. The first 2 functions take two node labels as
  51. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  52. non-symbolic label for each the two nodes. Each label is in form of 2-D
  53. dimension array (n_samples, n_features). Each function returns a number
  54. as the kernel value. Ignored when nodes are unlabeled.
  55. edge_kernels : dict
  56. A dictionary of kernel functions for edges, including 3 items: 'symb'
  57. for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix'
  58. for both labels. The first 2 functions take two edge labels as
  59. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  60. non-symbolic label for each the two edges. Each label is in form of 2-D
  61. dimension array (n_samples, n_features). Each function returns a number
  62. as the kernel value. Ignored when edges are unlabeled.
  63. compute_method : string
  64. Computation method to store the shortest paths and compute the graph
  65. kernel. The Following choices are available:
  66. 'trie': store paths as tries.
  67. 'naive': store paths to lists.
  68. n_jobs : int
  69. Number of jobs for parallelization.
  70. Return
  71. ------
  72. Kmatrix : Numpy matrix
  73. Kernel matrix, each element of which is the mean average structural
  74. shortest path kernel between 2 praphs.
  75. """
  76. # pre-process
  77. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  78. Gn = [g.copy() for g in Gn]
  79. weight = None
  80. if edge_weight is None:
  81. if verbose:
  82. print('\n None edge weight specified. Set all weight to 1.\n')
  83. else:
  84. try:
  85. some_weight = list(
  86. nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
  87. if isinstance(some_weight, (float, int)):
  88. weight = edge_weight
  89. else:
  90. if verbose:
  91. print(
  92. '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
  93. % edge_weight)
  94. except:
  95. if verbose:
  96. print(
  97. '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
  98. % edge_weight)
  99. ds_attrs = get_dataset_attributes(
  100. Gn,
  101. attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled',
  102. 'edge_attr_dim', 'is_directed'],
  103. node_label=node_label, edge_label=edge_label)
  104. start_time = time.time()
  105. # get shortest paths of each graph in Gn
  106. if parallel == 'imap_unordered':
  107. splist = [None] * len(Gn)
  108. pool = Pool(n_jobs)
  109. itr = zip(Gn, range(0, len(Gn)))
  110. if len(Gn) < 100 * n_jobs:
  111. chunksize = int(len(Gn) / n_jobs) + 1
  112. else:
  113. chunksize = 100
  114. # get shortest path graphs of Gn
  115. if compute_method == 'trie':
  116. getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed'])
  117. else:
  118. getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed'])
  119. if verbose:
  120. iterator = tqdm(pool.imap_unordered(getsp_partial, itr, chunksize),
  121. desc='getting shortest paths', file=sys.stdout)
  122. else:
  123. iterator = pool.imap_unordered(getsp_partial, itr, chunksize)
  124. for i, sp in iterator:
  125. splist[i] = sp
  126. # time.sleep(10)
  127. pool.close()
  128. pool.join()
  129. # ---- direct running, normally use single CPU core. ----
  130. elif parallel == None:
  131. splist = []
  132. if verbose:
  133. iterator = tqdm(Gn, desc='getting sp graphs', file=sys.stdout)
  134. else:
  135. iterator = Gn
  136. if compute_method == 'trie':
  137. for g in iterator:
  138. splist.append(get_sps_as_trie(g, weight, ds_attrs['is_directed']))
  139. else:
  140. for g in iterator:
  141. splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed']))
  142. # ss = 0
  143. # ss += sys.getsizeof(splist)
  144. # for spss in splist:
  145. # ss += sys.getsizeof(spss)
  146. # for spp in spss:
  147. # ss += sys.getsizeof(spp)
  148. # time.sleep(20)
  149. # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
  150. # sp_ml = [0] * len(Gn) # shortest path matrices
  151. # for i in result_sp:
  152. # sp_ml[i[0]] = i[1]
  153. # edge_x_g = [[] for i in range(len(sp_ml))]
  154. # edge_y_g = [[] for i in range(len(sp_ml))]
  155. # edge_w_g = [[] for i in range(len(sp_ml))]
  156. # for idx, item in enumerate(sp_ml):
  157. # for i1 in range(len(item)):
  158. # for i2 in range(i1 + 1, len(item)):
  159. # if item[i1, i2] != np.inf:
  160. # edge_x_g[idx].append(i1)
  161. # edge_y_g[idx].append(i2)
  162. # edge_w_g[idx].append(item[i1, i2])
  163. # print(len(edge_x_g[0]))
  164. # print(len(edge_y_g[0]))
  165. # print(len(edge_w_g[0]))
  166. Kmatrix = np.zeros((len(Gn), len(Gn)))
  167. # ---- use pool.imap_unordered to parallel and track progress. ----
  168. if parallel == 'imap_unordered':
  169. def init_worker(spl_toshare, gs_toshare):
  170. global G_spl, G_gs
  171. G_spl = spl_toshare
  172. G_gs = gs_toshare
  173. if compute_method == 'trie':
  174. do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label,
  175. node_kernels, edge_kernels)
  176. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  177. glbv=(splist, Gn), n_jobs=n_jobs, verbose=verbose)
  178. else:
  179. do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  180. node_kernels, edge_kernels)
  181. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  182. glbv=(splist, Gn), n_jobs=n_jobs, verbose=verbose)
  183. # ---- direct running, normally use single CPU core. ----
  184. elif parallel == None:
  185. from itertools import combinations_with_replacement
  186. itr = combinations_with_replacement(range(0, len(Gn)), 2)
  187. if verbose:
  188. iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout)
  189. else:
  190. iterator = itr
  191. if compute_method == 'trie':
  192. for i, j in iterator:
  193. kernel = ssp_do_trie(Gn[i], Gn[j], splist[i], splist[j],
  194. ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  195. Kmatrix[i][j] = kernel
  196. Kmatrix[j][i] = kernel
  197. else:
  198. for i, j in iterator:
  199. kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j],
  200. ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  201. # if(kernel > 1):
  202. # print("error here ")
  203. Kmatrix[i][j] = kernel
  204. Kmatrix[j][i] = kernel
  205. # # ---- use pool.map to parallel. ----
  206. # pool = Pool(n_jobs)
  207. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  208. # node_kernels, edge_kernels)
  209. # itr = zip(combinations_with_replacement(Gn, 2),
  210. # combinations_with_replacement(splist, 2),
  211. # combinations_with_replacement(range(0, len(Gn)), 2))
  212. # for i, j, kernel in tqdm(
  213. # pool.map(do_partial, itr), desc='calculating kernels',
  214. # file=sys.stdout):
  215. # Kmatrix[i][j] = kernel
  216. # Kmatrix[j][i] = kernel
  217. # pool.close()
  218. # pool.join()
  219. # # ---- use pool.imap_unordered to parallel and track progress. ----
  220. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  221. # node_kernels, edge_kernels)
  222. # itr = zip(combinations_with_replacement(Gn, 2),
  223. # combinations_with_replacement(splist, 2),
  224. # combinations_with_replacement(range(0, len(Gn)), 2))
  225. # len_itr = int(len(Gn) * (len(Gn) + 1) / 2)
  226. # if len_itr < 1000 * n_jobs:
  227. # chunksize = int(len_itr / n_jobs) + 1
  228. # else:
  229. # chunksize = 1000
  230. # from contextlib import closing
  231. # with closing(Pool(n_jobs)) as pool:
  232. # for i, j, kernel in tqdm(
  233. # pool.imap_unordered(do_partial, itr, 1000),
  234. # desc='calculating kernels',
  235. # file=sys.stdout):
  236. # Kmatrix[i][j] = kernel
  237. # Kmatrix[j][i] = kernel
  238. # pool.close()
  239. # pool.join()
  240. run_time = time.time() - start_time
  241. if verbose:
  242. print("\n --- shortest path kernel matrix of size %d built in %s seconds ---"
  243. % (len(Gn), run_time))
  244. return Kmatrix, run_time
  245. def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label,
  246. node_kernels, edge_kernels):
  247. kernel = 0
  248. # First, compute shortest path matrices, method borrowed from FCSP.
  249. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  250. # Then, compute kernels between all pairs of edges, which is an idea of
  251. # extension of FCSP. It suits sparse graphs, which is the most case we
  252. # went though. For dense graphs, this would be slow.
  253. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  254. # compute graph kernels
  255. if vk_dict:
  256. if ek_dict:
  257. for p1, p2 in product(spl1, spl2):
  258. if len(p1) == len(p2):
  259. kpath = vk_dict[(p1[0], p2[0])]
  260. if kpath:
  261. for idx in range(1, len(p1)):
  262. kpath *= vk_dict[(p1[idx], p2[idx])] * \
  263. ek_dict[((p1[idx-1], p1[idx]),
  264. (p2[idx-1], p2[idx]))]
  265. if not kpath:
  266. break
  267. kernel += kpath # add up kernels of all paths
  268. else:
  269. for p1, p2 in product(spl1, spl2):
  270. if len(p1) == len(p2):
  271. kpath = vk_dict[(p1[0], p2[0])]
  272. if kpath:
  273. for idx in range(1, len(p1)):
  274. kpath *= vk_dict[(p1[idx], p2[idx])]
  275. if not kpath:
  276. break
  277. kernel += kpath # add up kernels of all paths
  278. else:
  279. if ek_dict:
  280. for p1, p2 in product(spl1, spl2):
  281. if len(p1) == len(p2):
  282. if len(p1) == 0:
  283. kernel += 1
  284. else:
  285. kpath = 1
  286. for idx in range(0, len(p1) - 1):
  287. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  288. (p2[idx], p2[idx+1]))]
  289. if not kpath:
  290. break
  291. kernel += kpath # add up kernels of all paths
  292. else:
  293. for p1, p2 in product(spl1, spl2):
  294. if len(p1) == len(p2):
  295. kernel += 1
  296. try:
  297. kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
  298. except ZeroDivisionError:
  299. print(spl1, spl2)
  300. print(g1.nodes(data=True))
  301. print(g1.edges(data=True))
  302. raise Exception
  303. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  304. # # compute vertex kernel matrix
  305. # try:
  306. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  307. # nx.number_of_nodes(g2)))
  308. # g1nl = enumerate(g1.nodes(data=True))
  309. # g2nl = enumerate(g2.nodes(data=True))
  310. # for i1, n1 in g1nl:
  311. # for i2, n2 in g2nl:
  312. # vk_mat[i1][i2] = kn(
  313. # n1[1][node_label], n2[1][node_label],
  314. # [n1[1]['attributes']], [n2[1]['attributes']])
  315. # range1 = range(0, len(edge_w_g[i]))
  316. # range2 = range(0, len(edge_w_g[j]))
  317. # for i1 in range1:
  318. # x1 = edge_x_g[i][i1]
  319. # y1 = edge_y_g[i][i1]
  320. # w1 = edge_w_g[i][i1]
  321. # for i2 in range2:
  322. # x2 = edge_x_g[j][i2]
  323. # y2 = edge_y_g[j][i2]
  324. # w2 = edge_w_g[j][i2]
  325. # ke = (w1 == w2)
  326. # if ke > 0:
  327. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  328. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  329. # Kmatrix += kn1 + kn2
  330. return kernel
  331. def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels,
  332. edge_kernels, itr):
  333. i = itr[0]
  334. j = itr[1]
  335. return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j],
  336. ds_attrs, node_label, edge_label,
  337. node_kernels, edge_kernels)
  338. def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label,
  339. node_kernels, edge_kernels):
  340. # # traverse all paths in graph1. Deep-first search is applied.
  341. # def traverseBothTrie(root, trie2, kernel, pcurrent=[]):
  342. # for key, node in root['children'].items():
  343. # pcurrent.append(key)
  344. # if node['isEndOfWord']:
  345. # # print(node['count'])
  346. # traverseTrie2(trie2.root, pcurrent, kernel,
  347. # pcurrent=[])
  348. # if node['children'] != {}:
  349. # traverseBothTrie(node, trie2, kernel, pcurrent)
  350. # else:
  351. # del pcurrent[-1]
  352. # if pcurrent != []:
  353. # del pcurrent[-1]
  354. #
  355. #
  356. # # traverse all paths in graph2 and find out those that are not in
  357. # # graph1. Deep-first search is applied.
  358. # def traverseTrie2(root, p1, kernel, pcurrent=[]):
  359. # for key, node in root['children'].items():
  360. # pcurrent.append(key)
  361. # if node['isEndOfWord']:
  362. # # print(node['count'])
  363. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  364. # if node['children'] != {}:
  365. # traverseTrie2(node, p1, kernel, pcurrent)
  366. # else:
  367. # del pcurrent[-1]
  368. # if pcurrent != []:
  369. # del pcurrent[-1]
  370. #
  371. #
  372. # kernel = [0]
  373. #
  374. # # First, compute shortest path matrices, method borrowed from FCSP.
  375. # vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  376. # # Then, compute kernels between all pairs of edges, which is an idea of
  377. # # extension of FCSP. It suits sparse graphs, which is the most case we
  378. # # went though. For dense graphs, this would be slow.
  379. # ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  380. #
  381. # # compute graph kernels
  382. # traverseBothTrie(trie1[0].root, trie2[0], kernel)
  383. #
  384. # kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  385. # # traverse all paths in graph1. Deep-first search is applied.
  386. # def traverseBothTrie(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  387. # for key, node in root['children'].items():
  388. # pcurrent.append(key)
  389. # if node['isEndOfWord']:
  390. # # print(node['count'])
  391. # traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  392. # pcurrent=[])
  393. # if node['children'] != {}:
  394. # traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  395. # else:
  396. # del pcurrent[-1]
  397. # if pcurrent != []:
  398. # del pcurrent[-1]
  399. #
  400. #
  401. # # traverse all paths in graph2 and find out those that are not in
  402. # # graph1. Deep-first search is applied.
  403. # def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  404. # for key, node in root['children'].items():
  405. # pcurrent.append(key)
  406. # if node['isEndOfWord']:
  407. # # print(node['count'])
  408. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  409. # if node['children'] != {}:
  410. # traverseTrie2(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  411. # else:
  412. # del pcurrent[-1]
  413. # if pcurrent != []:
  414. # del pcurrent[-1]
  415. kernel = [0]
  416. # First, compute shortest path matrices, method borrowed from FCSP.
  417. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  418. # Then, compute kernels between all pairs of edges, which is an idea of
  419. # extension of FCSP. It suits sparse graphs, which is the most case we
  420. # went though. For dense graphs, this would be slow.
  421. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  422. # compute graph kernels
  423. # traverseBothTrie(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  424. if vk_dict:
  425. if ek_dict:
  426. traverseBothTriem(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  427. else:
  428. traverseBothTriev(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  429. else:
  430. if ek_dict:
  431. traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  432. else:
  433. traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  434. kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  435. return kernel
  436. def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels,
  437. edge_kernels, itr):
  438. i = itr[0]
  439. j = itr[1]
  440. return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs,
  441. node_label, edge_label, node_kernels, edge_kernels)
  442. def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs):
  443. # compute shortest path matrices, method borrowed from FCSP.
  444. vk_dict = {} # shortest path matrices dict
  445. if ds_attrs['node_labeled']:
  446. # node symb and non-synb labeled
  447. if ds_attrs['node_attr_dim'] > 0:
  448. kn = node_kernels['mix']
  449. for n1, n2 in product(
  450. g1.nodes(data=True), g2.nodes(data=True)):
  451. vk_dict[(n1[0], n2[0])] = kn(
  452. n1[1][node_label], n2[1][node_label],
  453. n1[1]['attributes'], n2[1]['attributes'])
  454. # node symb labeled
  455. else:
  456. kn = node_kernels['symb']
  457. for n1 in g1.nodes(data=True):
  458. for n2 in g2.nodes(data=True):
  459. vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
  460. n2[1][node_label])
  461. else:
  462. # node non-synb labeled
  463. if ds_attrs['node_attr_dim'] > 0:
  464. kn = node_kernels['nsymb']
  465. for n1 in g1.nodes(data=True):
  466. for n2 in g2.nodes(data=True):
  467. vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
  468. n2[1]['attributes'])
  469. # node unlabeled
  470. else:
  471. pass
  472. return vk_dict
  473. def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs):
  474. # compute kernels between all pairs of edges, which is an idea of
  475. # extension of FCSP. It suits sparse graphs, which is the most case we
  476. # went though. For dense graphs, this would be slow.
  477. ek_dict = {} # dict of edge kernels
  478. if ds_attrs['edge_labeled']:
  479. # edge symb and non-synb labeled
  480. if ds_attrs['edge_attr_dim'] > 0:
  481. ke = edge_kernels['mix']
  482. for e1, e2 in product(
  483. g1.edges(data=True), g2.edges(data=True)):
  484. ek_temp = ke(e1[2][edge_label], e2[2][edge_label],
  485. e1[2]['attributes'], e2[2]['attributes'])
  486. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  487. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  488. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  489. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  490. # edge symb labeled
  491. else:
  492. ke = edge_kernels['symb']
  493. for e1 in g1.edges(data=True):
  494. for e2 in g2.edges(data=True):
  495. ek_temp = ke(e1[2][edge_label], e2[2][edge_label])
  496. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  497. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  498. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  499. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  500. else:
  501. # edge non-synb labeled
  502. if ds_attrs['edge_attr_dim'] > 0:
  503. ke = edge_kernels['nsymb']
  504. for e1 in g1.edges(data=True):
  505. for e2 in g2.edges(data=True):
  506. ek_temp = ke(e1[2]['attributes'], e2[2]['attributes'])
  507. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  508. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  509. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  510. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  511. # edge unlabeled
  512. else:
  513. pass
  514. return ek_dict
  515. # traverse all paths in graph1. Deep-first search is applied.
  516. def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  517. for key, node in root['children'].items():
  518. pcurrent.append(key)
  519. if node['isEndOfWord']:
  520. # print(node['count'])
  521. traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  522. pcurrent=[])
  523. if node['children'] != {}:
  524. traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  525. else:
  526. del pcurrent[-1]
  527. if pcurrent != []:
  528. del pcurrent[-1]
  529. # traverse all paths in graph2 and find out those that are not in
  530. # graph1. Deep-first search is applied.
  531. def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  532. for key, node in root['children'].items():
  533. pcurrent.append(key)
  534. if node['isEndOfWord']:
  535. # print(node['count'])
  536. if len(p1) == len(pcurrent):
  537. kpath = vk_dict[(p1[0], pcurrent[0])]
  538. if kpath:
  539. for idx in range(1, len(p1)):
  540. kpath *= vk_dict[(p1[idx], pcurrent[idx])] * \
  541. ek_dict[((p1[idx-1], p1[idx]),
  542. (pcurrent[idx-1], pcurrent[idx]))]
  543. if not kpath:
  544. break
  545. kernel[0] += kpath # add up kernels of all paths
  546. if node['children'] != {}:
  547. traverseTrie2m(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  548. else:
  549. del pcurrent[-1]
  550. if pcurrent != []:
  551. del pcurrent[-1]
  552. # traverse all paths in graph1. Deep-first search is applied.
  553. def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  554. for key, node in root['children'].items():
  555. pcurrent.append(key)
  556. if node['isEndOfWord']:
  557. # print(node['count'])
  558. traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  559. pcurrent=[])
  560. if node['children'] != {}:
  561. traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  562. else:
  563. del pcurrent[-1]
  564. if pcurrent != []:
  565. del pcurrent[-1]
  566. # traverse all paths in graph2 and find out those that are not in
  567. # graph1. Deep-first search is applied.
  568. def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  569. for key, node in root['children'].items():
  570. pcurrent.append(key)
  571. if node['isEndOfWord']:
  572. # print(node['count'])
  573. if len(p1) == len(pcurrent):
  574. kpath = vk_dict[(p1[0], pcurrent[0])]
  575. if kpath:
  576. for idx in range(1, len(p1)):
  577. kpath *= vk_dict[(p1[idx], pcurrent[idx])]
  578. if not kpath:
  579. break
  580. kernel[0] += kpath # add up kernels of all paths
  581. if node['children'] != {}:
  582. traverseTrie2v(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  583. else:
  584. del pcurrent[-1]
  585. if pcurrent != []:
  586. del pcurrent[-1]
  587. # traverse all paths in graph1. Deep-first search is applied.
  588. def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  589. for key, node in root['children'].items():
  590. pcurrent.append(key)
  591. if node['isEndOfWord']:
  592. # print(node['count'])
  593. traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  594. pcurrent=[])
  595. if node['children'] != {}:
  596. traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  597. else:
  598. del pcurrent[-1]
  599. if pcurrent != []:
  600. del pcurrent[-1]
  601. # traverse all paths in graph2 and find out those that are not in
  602. # graph1. Deep-first search is applied.
  603. def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  604. for key, node in root['children'].items():
  605. pcurrent.append(key)
  606. if node['isEndOfWord']:
  607. # print(node['count'])
  608. if len(p1) == len(pcurrent):
  609. if len(p1) == 0:
  610. kernel += 1
  611. else:
  612. kpath = 1
  613. for idx in range(0, len(p1) - 1):
  614. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  615. (pcurrent[idx], pcurrent[idx+1]))]
  616. if not kpath:
  617. break
  618. kernel[0] += kpath # add up kernels of all paths
  619. if node['children'] != {}:
  620. traverseTrie2e(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  621. else:
  622. del pcurrent[-1]
  623. if pcurrent != []:
  624. del pcurrent[-1]
  625. # traverse all paths in graph1. Deep-first search is applied.
  626. def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  627. for key, node in root['children'].items():
  628. pcurrent.append(key)
  629. if node['isEndOfWord']:
  630. # print(node['count'])
  631. traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  632. pcurrent=[])
  633. if node['children'] != {}:
  634. traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  635. else:
  636. del pcurrent[-1]
  637. if pcurrent != []:
  638. del pcurrent[-1]
  639. # traverse all paths in graph2 and find out those that are not in
  640. # graph1. Deep-first search is applied.
  641. def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  642. for key, node in root['children'].items():
  643. pcurrent.append(key)
  644. if node['isEndOfWord']:
  645. # print(node['count'])
  646. if len(p1) == len(pcurrent):
  647. kernel[0] += 1
  648. if node['children'] != {}:
  649. traverseTrie2u(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  650. else:
  651. del pcurrent[-1]
  652. if pcurrent != []:
  653. del pcurrent[-1]
  654. #def computePathKernel(p1, p2, vk_dict, ek_dict):
  655. # kernel = 0
  656. # if vk_dict:
  657. # if ek_dict:
  658. # if len(p1) == len(p2):
  659. # kpath = vk_dict[(p1[0], p2[0])]
  660. # if kpath:
  661. # for idx in range(1, len(p1)):
  662. # kpath *= vk_dict[(p1[idx], p2[idx])] * \
  663. # ek_dict[((p1[idx-1], p1[idx]),
  664. # (p2[idx-1], p2[idx]))]
  665. # if not kpath:
  666. # break
  667. # kernel += kpath # add up kernels of all paths
  668. # else:
  669. # if len(p1) == len(p2):
  670. # kpath = vk_dict[(p1[0], p2[0])]
  671. # if kpath:
  672. # for idx in range(1, len(p1)):
  673. # kpath *= vk_dict[(p1[idx], p2[idx])]
  674. # if not kpath:
  675. # break
  676. # kernel += kpath # add up kernels of all paths
  677. # else:
  678. # if ek_dict:
  679. # if len(p1) == len(p2):
  680. # if len(p1) == 0:
  681. # kernel += 1
  682. # else:
  683. # kpath = 1
  684. # for idx in range(0, len(p1) - 1):
  685. # kpath *= ek_dict[((p1[idx], p1[idx+1]),
  686. # (p2[idx], p2[idx+1]))]
  687. # if not kpath:
  688. # break
  689. # kernel += kpath # add up kernels of all paths
  690. # else:
  691. # if len(p1) == len(p2):
  692. # kernel += 1
  693. #
  694. # return kernel
  695. def get_shortest_paths(G, weight, directed):
  696. """Get all shortest paths of a graph.
  697. Parameters
  698. ----------
  699. G : NetworkX graphs
  700. The graphs whose paths are calculated.
  701. weight : string/None
  702. edge attribute used as weight to calculate the shortest path.
  703. directed: boolean
  704. Whether graph is directed.
  705. Return
  706. ------
  707. sp : list of list
  708. List of shortest paths of the graph, where each path is represented by a list of nodes.
  709. """
  710. sp = []
  711. for n1, n2 in combinations(G.nodes(), 2):
  712. try:
  713. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  714. except nx.NetworkXNoPath: # nodes not connected
  715. # sp.append([])
  716. pass
  717. else:
  718. sp += spltemp
  719. # each edge walk is counted twice, starting from both its extreme nodes.
  720. if not directed:
  721. sp += [sptemp[::-1] for sptemp in spltemp]
  722. # add single nodes as length 0 paths.
  723. sp += [[n] for n in G.nodes()]
  724. return sp
  725. def wrapper_getSP_naive(weight, directed, itr_item):
  726. g = itr_item[0]
  727. i = itr_item[1]
  728. return i, get_shortest_paths(g, weight, directed)
  729. def get_sps_as_trie(G, weight, directed):
  730. """Get all shortest paths of a graph and insert them into a trie.
  731. Parameters
  732. ----------
  733. G : NetworkX graphs
  734. The graphs whose paths are calculated.
  735. weight : string/None
  736. edge attribute used as weight to calculate the shortest path.
  737. directed: boolean
  738. Whether graph is directed.
  739. Return
  740. ------
  741. sp : list of list
  742. List of shortest paths of the graph, where each path is represented by a list of nodes.
  743. """
  744. sptrie = Trie()
  745. lensp = 0
  746. for n1, n2 in combinations(G.nodes(), 2):
  747. try:
  748. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  749. except nx.NetworkXNoPath: # nodes not connected
  750. pass
  751. else:
  752. lensp += len(spltemp)
  753. if not directed:
  754. lensp += len(spltemp)
  755. for sp in spltemp:
  756. sptrie.insertWord(sp)
  757. # each edge walk is counted twice, starting from both its extreme nodes.
  758. if not directed:
  759. sptrie.insertWord(sp[::-1])
  760. # add single nodes as length 0 paths.
  761. for n in G.nodes():
  762. sptrie.insertWord([n])
  763. return sptrie, lensp + nx.number_of_nodes(G)
  764. def wrapper_getSP_trie(weight, directed, itr_item):
  765. g = itr_item[0]
  766. i = itr_item[1]
  767. return i, get_sps_as_trie(g, weight, directed)

A Python package for graph kernels, graph edit distances and graph pre-image problem.