|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Mon Mar 30 11:59:57 2020
-
- @author: ljia
-
- @references:
-
- [1] Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
- Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
- """
- import sys
- from itertools import product
- # from functools import partial
- from multiprocessing import Pool
- from tqdm import tqdm
- # import networkx as nx
- import numpy as np
- from gklearn.utils.parallel import parallel_gm, parallel_me
- from gklearn.utils.utils import get_shortest_paths, compute_vertex_kernels
- from gklearn.kernels import GraphKernel
-
-
- class StructuralSP(GraphKernel):
-
- def __init__(self, **kwargs):
- GraphKernel.__init__(self)
- self._node_labels = kwargs.get('node_labels', [])
- self._edge_labels = kwargs.get('edge_labels', [])
- self._node_attrs = kwargs.get('node_attrs', [])
- self._edge_attrs = kwargs.get('edge_attrs', [])
- self._edge_weight = kwargs.get('edge_weight', None)
- self._node_kernels = kwargs.get('node_kernels', None)
- self._edge_kernels = kwargs.get('edge_kernels', None)
- self._compute_method = kwargs.get('compute_method', 'naive')
- self._ds_infos = kwargs.get('ds_infos', {})
-
-
- def _compute_gm_series(self):
- # get shortest paths of each graph in the graphs.
- splist = []
- if self._verbose >= 2:
- iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout)
- else:
- iterator = self._graphs
- if self._compute_method == 'trie':
- for g in iterator:
- splist.append(self._get_sps_as_trie(g))
- else:
- for g in iterator:
- splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']))
-
- # compute Gram matrix.
- gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
-
- from itertools import combinations_with_replacement
- itr = combinations_with_replacement(range(0, len(self._graphs)), 2)
- if self._verbose >= 2:
- iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout)
- else:
- iterator = itr
- if self._compute_method == 'trie':
- for i, j in iterator:
- kernel = self._ssp_do_trie(self._graphs[i], self._graphs[j], splist[i], splist[j])
- gram_matrix[i][j] = kernel
- gram_matrix[j][i] = kernel
- else:
- for i, j in iterator:
- kernel = self._ssp_do_naive(self._graphs[i], self._graphs[j], splist[i], splist[j])
- # if(kernel > 1):
- # print("error here ")
- gram_matrix[i][j] = kernel
- gram_matrix[j][i] = kernel
-
- return gram_matrix
-
-
- def _compute_gm_imap_unordered(self):
- # get shortest paths of each graph in the graphs.
- splist = [None] * len(self._graphs)
- pool = Pool(self._n_jobs)
- itr = zip(self._graphs, range(0, len(self._graphs)))
- if len(self._graphs) < 100 * self._n_jobs:
- chunksize = int(len(self._graphs) / self._n_jobs) + 1
- else:
- chunksize = 100
- # get shortest path graphs of self._graphs
- if self._compute_method == 'trie':
- get_sps_fun = self._wrapper_get_sps_trie
- else:
- get_sps_fun = self._wrapper_get_sps_naive
- if self.verbose >= 2:
- iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize),
- desc='getting shortest paths', file=sys.stdout)
- else:
- iterator = pool.imap_unordered(get_sps_fun, itr, chunksize)
- for i, sp in iterator:
- splist[i] = sp
- pool.close()
- pool.join()
-
- # compute Gram matrix.
- gram_matrix = np.zeros((len(self._graphs), len(self._graphs)))
-
- def init_worker(spl_toshare, gs_toshare):
- global G_spl, G_gs
- G_spl = spl_toshare
- G_gs = gs_toshare
- if self._compute_method == 'trie':
- do_fun = self._wrapper_ssp_do_trie
- else:
- do_fun = self._wrapper_ssp_do_naive
- parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker,
- glbv=(splist, self._graphs), n_jobs=self._n_jobs, verbose=self._verbose)
-
- return gram_matrix
-
-
- def _compute_kernel_list_series(self, g1, g_list):
- # get shortest paths of g1 and each graph in g_list.
- sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed'])
- splist = []
- if self._verbose >= 2:
- iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout)
- else:
- iterator = g_list
- if self._compute_method == 'trie':
- for g in iterator:
- splist.append(self._get_sps_as_trie(g))
- else:
- for g in iterator:
- splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']))
-
- # compute kernel list.
- kernel_list = [None] * len(g_list)
- if self._verbose >= 2:
- iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout)
- else:
- iterator = range(len(g_list))
- if self._compute_method == 'trie':
- for i in iterator:
- kernel = self._ssp_do_trie(g1, g_list[i], sp1, splist[i])
- kernel_list[i] = kernel
- else:
- for i in iterator:
- kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i])
- kernel_list[i] = kernel
-
- return kernel_list
-
-
- def _compute_kernel_list_imap_unordered(self, g1, g_list):
- # get shortest paths of g1 and each graph in g_list.
- sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed'])
- splist = [None] * len(g_list)
- pool = Pool(self._n_jobs)
- itr = zip(g_list, range(0, len(g_list)))
- if len(g_list) < 100 * self._n_jobs:
- chunksize = int(len(g_list) / self._n_jobs) + 1
- else:
- chunksize = 100
- # get shortest path graphs of g_list
- if self._compute_method == 'trie':
- get_sps_fun = self._wrapper_get_sps_trie
- else:
- get_sps_fun = self._wrapper_get_sps_naive
- if self.verbose >= 2:
- iterator = tqdm(pool.imap_unordered(get_sps_fun, itr, chunksize),
- desc='getting shortest paths', file=sys.stdout)
- else:
- iterator = pool.imap_unordered(get_sps_fun, itr, chunksize)
- for i, sp in iterator:
- splist[i] = sp
- pool.close()
- pool.join()
-
- # compute Gram matrix.
- kernel_list = [None] * len(g_list)
-
- def init_worker(sp1_toshare, spl_toshare, g1_toshare, gl_toshare):
- global G_sp1, G_spl, G_g1, G_gl
- G_sp1 = sp1_toshare
- G_spl = spl_toshare
- G_g1 = g1_toshare
- G_gl = gl_toshare
- if self._compute_method == 'trie':
- do_fun = self._wrapper_ssp_do_trie
- else:
- do_fun = self._wrapper_kernel_list_do
- def func_assign(result, var_to_assign):
- var_to_assign[result[0]] = result[1]
- itr = range(len(g_list))
- len_itr = len(g_list)
- parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr,
- init_worker=init_worker, glbv=(sp1, splist, g1, g_list), method='imap_unordered', n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose)
-
- return kernel_list
-
-
- def _wrapper_kernel_list_do(self, itr):
- return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr])
-
-
-
- def _compute_single_kernel_series(self, g1, g2):
- sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed'])
- sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed'])
- if self._compute_method == 'trie':
- kernel = self._ssp_do_trie(g1, g2, sp1, sp2)
- else:
- kernel = self._ssp_do_naive(g1, g2, sp1, sp2)
- return kernel
-
-
- def _wrapper_get_sps_naive(self, itr_item):
- g = itr_item[0]
- i = itr_item[1]
- return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])
-
-
- def _ssp_do_naive(self, g1, g2, spl1, spl2):
-
- kernel = 0
-
- # First, compute shortest path matrices, method borrowed from FCSP.
- vk_dict = self._get_all_node_kernels(g1, g2)
- # Then, compute kernels between all pairs of edges, which is an idea of
- # extension of FCSP. It suits sparse graphs, which is the most case we
- # went though. For dense graphs, this would be slow.
- ek_dict = self._get_all_edge_kernels(g1, g2)
-
- # compute graph kernels
- if vk_dict:
- if ek_dict:
- for p1, p2 in product(spl1, spl2):
- if len(p1) == len(p2):
- kpath = vk_dict[(p1[0], p2[0])]
- if kpath:
- for idx in range(1, len(p1)):
- kpath *= vk_dict[(p1[idx], p2[idx])] * \
- ek_dict[((p1[idx-1], p1[idx]),
- (p2[idx-1], p2[idx]))]
- if not kpath:
- break
- kernel += kpath # add up kernels of all paths
- else:
- for p1, p2 in product(spl1, spl2):
- if len(p1) == len(p2):
- kpath = vk_dict[(p1[0], p2[0])]
- if kpath:
- for idx in range(1, len(p1)):
- kpath *= vk_dict[(p1[idx], p2[idx])]
- if not kpath:
- break
- kernel += kpath # add up kernels of all paths
- else:
- if ek_dict:
- for p1, p2 in product(spl1, spl2):
- if len(p1) == len(p2):
- if len(p1) == 0:
- kernel += 1
- else:
- kpath = 1
- for idx in range(0, len(p1) - 1):
- kpath *= ek_dict[((p1[idx], p1[idx+1]),
- (p2[idx], p2[idx+1]))]
- if not kpath:
- break
- kernel += kpath # add up kernels of all paths
- else:
- for p1, p2 in product(spl1, spl2):
- if len(p1) == len(p2):
- kernel += 1
- try:
- kernel = kernel / (len(spl1) * len(spl2)) # Compute mean average
- except ZeroDivisionError:
- print(spl1, spl2)
- print(g1.nodes(data=True))
- print(g1.edges(data=True))
- raise Exception
-
- # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
- # # compute vertex kernel matrix
- # try:
- # vk_mat = np.zeros((nx.number_of_nodes(g1),
- # nx.number_of_nodes(g2)))
- # g1nl = enumerate(g1.nodes(data=True))
- # g2nl = enumerate(g2.nodes(data=True))
- # for i1, n1 in g1nl:
- # for i2, n2 in g2nl:
- # vk_mat[i1][i2] = kn(
- # n1[1][node_label], n2[1][node_label],
- # [n1[1]['attributes']], [n2[1]['attributes']])
-
- # range1 = range(0, len(edge_w_g[i]))
- # range2 = range(0, len(edge_w_g[j]))
- # for i1 in range1:
- # x1 = edge_x_g[i][i1]
- # y1 = edge_y_g[i][i1]
- # w1 = edge_w_g[i][i1]
- # for i2 in range2:
- # x2 = edge_x_g[j][i2]
- # y2 = edge_y_g[j][i2]
- # w2 = edge_w_g[j][i2]
- # ke = (w1 == w2)
- # if ke > 0:
- # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
- # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
- # Kmatrix += kn1 + kn2
- return kernel
-
-
- def _wrapper_ssp_do_naive(self, itr):
- i = itr[0]
- j = itr[1]
- return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j])
-
-
- def _get_all_node_kernels(self, g1, g2):
- return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs)
-
-
- def _get_all_edge_kernels(self, g1, g2):
- # compute kernels between all pairs of edges, which is an idea of
- # extension of FCSP. It suits sparse graphs, which is the most case we
- # went though. For dense graphs, this would be slow.
- ek_dict = {} # dict of edge kernels
- if len(self._edge_labels) > 0:
- # edge symb and non-synb labeled
- if len(self._edge_attrs) > 0:
- ke = self._edge_kernels['mix']
- for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)):
- e1_labels = [e1[2][el] for el in self._edge_labels]
- e2_labels = [e2[2][el] for el in self._edge_labels]
- e1_attrs = [e1[2][ea] for ea in self._edge_attrs]
- e2_attrs = [e2[2][ea] for ea in self._edge_attrs]
- ek_temp = ke(e1_labels, e2_labels, e1_attrs, e2_attrs)
- ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
- ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
- ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
- ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
- # edge symb labeled
- else:
- ke = self._edge_kernels['symb']
- for e1 in g1.edges(data=True):
- for e2 in g2.edges(data=True):
- e1_labels = [e1[2][el] for el in self._edge_labels]
- e2_labels = [e2[2][el] for el in self._edge_labels]
- ek_temp = ke(e1_labels, e2_labels)
- ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
- ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
- ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
- ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
- else:
- # edge non-synb labeled
- if len(self._edge_attrs) > 0:
- ke = self._edge_kernels['nsymb']
- for e1 in g1.edges(data=True):
- for e2 in g2.edges(data=True):
- e1_attrs = [e1[2][ea] for ea in self._edge_attrs]
- e2_attrs = [e2[2][ea] for ea in self._edge_attrs]
- ek_temp = ke(e1_attrs, e2_attrs)
- ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
- ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
- ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
- ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
- # edge unlabeled
- else:
- pass
-
- return ek_dict
|