|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Thu Apr 30 10:16:33 2020
-
- @author: ljia
- """
- import pandas as pd
- import numpy as np
- import os
-
-
- DS_SYMB = ['MUTAG', 'Monoterpenoides', 'MAO_symb']
- DS_NON_SYMB = ['Letter-high', 'Letter-med', 'Letter-low', 'COIL-RAG', 'PAH']
- DS_UNLABELED = ['PAH_unlabeled']
-
-
- def rounder(x, decimals):
- x_strs = str(x).split('.')
- if len(x_strs) == 2:
- before = x_strs[0]
- after = x_strs[1]
- if len(after) > decimals:
- if int(after[decimals]) >= 5:
- after0s = ''
- for c in after:
- if c == '0':
- after0s += '0'
- elif c != '0':
- break
- after = after0s + str(int(after[0:decimals]) + 1)[-decimals:]
- else:
- after = after[0:decimals]
- elif len(after) < decimals:
- after += '0' * (decimals - len(after))
- return before + '.' + after
-
- elif len(x_strs) == 1:
- return x_strs[0]
-
-
- def replace_nth(string, sub, wanted, n):
- import re
- where = [m.start() for m in re.finditer(sub, string)][n-1]
- before = string[:where]
- after = string[where:]
- after = after.replace(sub, wanted, 1)
- newString = before + after
- return newString
-
-
- def df_to_latex_table(df):
- ltx = df.to_latex(index=True, escape=False, multirow=True)
-
- # modify middle lines.
- ltx = ltx.replace('\\cline{1-9}\n\\cline{2-9}', '\\toprule')
- ltx = ltx.replace('\\cline{2-9}', '\\cmidrule(l){2-9}')
-
- # modify first row.
- i_start = ltx.find('\n\\toprule\n')
- i_end = ltx.find('\\\\\n\\midrule\n')
- ltx = ltx.replace(ltx[i_start:i_end+12], '\n\\toprule\nDatasets & Graph Kernels & Algorithms & $d_\\mathcal{F}$ SM & $d_\\mathcal{F}$ SM (UO) & $d_\\mathcal{F}$ GM & $d_\\mathcal{F}$ GM (UO) & Runtime & Runtime (UO) \\\\\n\\midrule\n', 1)
-
- # add row numbers.
- ltx = ltx.replace('lllllllll', 'lllllllll|@{\\makebox[2em][r]{\\textit{\\rownumber\\space}}}', 1)
- ltx = replace_nth(ltx, '\\\\\n', '\\gdef\\rownumber{\\stepcounter{magicrownumbers}\\arabic{magicrownumbers}} \\\\\n', 1)
-
- return ltx
-
-
- def beautify_df(df):
- df = df.sort_values(by=['Datasets', 'Graph Kernels'])
- df = df.set_index(['Datasets', 'Graph Kernels', 'Algorithms'])
- # index = pd.MultiIndex.from_frame(df[['Datasets', 'Graph Kernels', 'Algorithms']])
-
- # bold the best results.
- for ds in df.index.get_level_values('Datasets').unique():
- for gk in df.loc[ds].index.get_level_values('Graph Kernels').unique():
- min_val = np.inf
- min_indices = []
- min_labels = []
- for index, row in df.loc[(ds, gk)].iterrows():
- for label in ['$d_\mathcal{F}$ SM', '$d_\mathcal{F}$ GM', '$d_\mathcal{F}$ GM (UO)']:
- value = row[label]
- if value != '-':
- value = float(value.strip('/same'))
- if value < min_val:
- min_val = value
- min_indices = [index]
- min_labels = [label]
- elif value == min_val:
- min_indices.append(index)
- min_labels.append(label)
- for idx, index in enumerate(min_indices):
- df.loc[(ds, gk, index), min_labels[idx]] = '\\textbf{' + df.loc[(ds, gk, index), min_labels[idx]] + '}'
-
- return df
-
-
- def get_results(data_dir, ds_name, gkernel):
- # get results from .csv.
- file_name = data_dir + 'results_summary.' + ds_name + '.' + gkernel + '.csv'
- try:
- df_summary = pd.read_csv(file_name)
- except FileNotFoundError:
- return None
-
- df_results = pd.DataFrame(index=None, columns=['d_F SM', 'd_F GM', 'runtime'])
- for index, row in df_summary.iterrows():
- if row['target'] == 'all' and row['fit method'] == 'k-graphs':
- df_results.loc['From median set'] = ['-', rounder(row['min dis_k gi'], 3), '-']
- if_uo = (int(row['mge num decrease order']) > 0 or int(row['mge num increase order']) > 0)
- df_results.loc['Optimized'] = [rounder(row['dis_k SM'], 3),
- rounder(row['dis_k GM'], 3) if if_uo else (rounder(row['dis_k GM'], 3) + '/same'),
- rounder(row['time total'], 2)]
- if row['target'] == 'all' and row['fit method'] == 'expert':
- if_uo = (int(row['mge num decrease order']) > 0 or int(row['mge num increase order']) > 0)
- df_results.loc['IAM: expert costs'] = [rounder(row['dis_k SM'], 3),
- rounder(row['dis_k GM'], 3) if if_uo else (rounder(row['dis_k GM'], 3) + '/same'),
- rounder(row['time total'], 2)]
-
- # get results from random summary .csv.
- random_fini = True
- file_name = data_dir + 'summary_for_random_edit_costs.csv'
- try:
- df_random = pd.read_csv(file_name)
- except FileNotFoundError:
- random_fini = False
-
- if random_fini:
- for index, row in df_random.iterrows():
- if row['measure'] == 'mean':
- if_uo = (float(row['mge num decrease order']) > 0 or float(row['mge num increase order']) > 0)
- df_results.loc['IAM: random costs'] = [rounder(row['dis_k SM'], 3),
- rounder(row['dis_k GM'], 3) if if_uo else (rounder(row['dis_k GM'], 3) + '/same'),
- rounder(row['time total'], 2)]
-
- # sort index.
- df_results = df_results.reindex([item for item in ['From median set', 'IAM: random costs', 'IAM: expert costs', 'Optimized'] if item in df_results.index])
-
- return df_results
-
-
- def get_results_of_one_xp(data_dir, ds_name, gkernel):
- df_results = pd.DataFrame()
-
- df_tmp_uo = None
- if not os.path.isfile(data_dir + 'update_order/error.txt'):
- df_tmp_uo = get_results(data_dir + 'update_order/', ds_name, gkernel)
-
- df_tmp = None
- if not os.path.isfile(data_dir + 'error.txt'):
- df_tmp = get_results(data_dir, ds_name, gkernel)
-
- if (df_tmp_uo is not None and not df_tmp_uo.empty) or (df_tmp is not None and not df_tmp.empty):
- df_results = pd.DataFrame(index=['From median set', 'IAM: random costs', 'IAM: expert costs', 'Optimized'], columns=['$d_\mathcal{F}$ SM', '$d_\mathcal{F}$ SM (UO)', '$d_\mathcal{F}$ GM', '$d_\mathcal{F}$ GM (UO)', 'Runtime', 'Runtime (UO)'])
- if df_tmp_uo is not None and not df_tmp_uo.empty:
- for index, row in df_tmp_uo.iterrows():
- for algo in df_results.index:
- if index == algo:
- df_results.at[algo, '$d_\mathcal{F}$ SM (UO)'] = row['d_F SM']
- df_results.at[algo, '$d_\mathcal{F}$ GM (UO)'] = row['d_F GM']
- df_results.at[algo, 'Runtime (UO)'] = row['runtime']
- if df_tmp is not None and not df_tmp.empty:
- for index, row in df_tmp.iterrows():
- for algo in df_results.index:
- if index == algo:
- df_results.at[algo, '$d_\mathcal{F}$ SM'] = row['d_F SM']
- df_results.at[algo, '$d_\mathcal{F}$ GM'] = row['d_F GM'].strip('/same')
- df_results.at[algo, 'Runtime'] = row['runtime']
-
- df_results = df_results.dropna(axis=0, how='all')
- df_results = df_results.fillna(value='-')
- df_results = df_results.reset_index().rename(columns={'index': 'Algorithms'})
-
- return df_results
-
-
- def get_results_for_all_experiments(root_dir):
- columns=['Datasets', 'Graph Kernels', 'Algorithms', '$d_\mathcal{F}$ SM', '$d_\mathcal{F}$ SM (UO)', '$d_\mathcal{F}$ GM', '$d_\mathcal{F}$ GM (UO)', 'Runtime', 'Runtime (UO)']
- df_symb = pd.DataFrame(columns=columns)
- df_nonsymb = pd.DataFrame(columns=columns)
- df_unlabeled = pd.DataFrame(columns=columns)
-
- dir_list = [i for i in os.listdir(root_dir) if os.path.isdir(root_dir + i)]
- for dir_name in dir_list:
- sp_tmp = dir_name.split('.')
- gkernel = sp_tmp[1]
- ds_name = sp_tmp[0].strip('[error]')
- suffix = ''
- if sp_tmp[-1] == 'unlabeled':
- suffix = '_unlabeled'
- elif sp_tmp[-1] == 'symb':
- suffix = '_symb'
-
- df_results = get_results_of_one_xp(root_dir + dir_name + '/', ds_name, gkernel)
-
- if not df_results.empty:
- ds_name += suffix
- if ds_name in DS_SYMB:
- for index, row in df_results.iterrows():
- df_symb.loc[len(df_symb)] = [ds_name.replace('_', '\_'), gkernel] + row.tolist()
- elif ds_name in DS_NON_SYMB:
- for index, row in df_results.iterrows():
- df_nonsymb.loc[len(df_nonsymb)] = [ds_name.replace('_', '\_'), gkernel] + row.tolist()
- elif ds_name in DS_UNLABELED:
- for index, row in df_results.iterrows():
- df_unlabeled.loc[len(df_unlabeled)] = [ds_name.replace('_', '\_'), gkernel] + row.tolist()
- else:
- raise Exception('dataset' + ds_name + 'is not pre-defined.')
-
- # sort.
- df_symb = beautify_df(df_symb)
- df_nonsymb = beautify_df(df_nonsymb)
- df_unlabeled = beautify_df(df_unlabeled)
-
- # convert dfs to latex strings.
- ltx_symb = df_to_latex_table(df_symb)
- ltx_nonsymb = df_to_latex_table(df_nonsymb)
- ltx_unlabeled = df_to_latex_table(df_unlabeled)
-
- return ltx_symb, ltx_nonsymb, ltx_unlabeled
-
-
- if __name__ == '__main__':
- # root_dir = '../results/xp_median_preimage.init20/'
- root_dir = '../../results/CRIANN/xp_median_preimage.init10/'
- ltx_symb, ltx_nonsymb, ltx_unlabeled = get_results_for_all_experiments(root_dir)
|