You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

median_graph_estimator.py 64 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Mon Mar 16 18:04:55 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. from gklearn.ged.env import AlgorithmState, NodeMap
  9. from gklearn.ged.util import misc
  10. from gklearn.utils import Timer
  11. import time
  12. from tqdm import tqdm
  13. import sys
  14. import networkx as nx
  15. import multiprocessing
  16. from multiprocessing import Pool
  17. from functools import partial
  18. class MedianGraphEstimator(object): # @todo: differ dummy_node from undifined node?
  19. def __init__(self, ged_env, constant_node_costs):
  20. """Constructor.
  21. Parameters
  22. ----------
  23. ged_env : gklearn.gedlib.gedlibpy.GEDEnv
  24. Initialized GED environment. The edit costs must be set by the user.
  25. constant_node_costs : Boolean
  26. Set to True if the node relabeling costs are constant.
  27. """
  28. self.__ged_env = ged_env
  29. self.__init_method = 'BRANCH_FAST'
  30. self.__init_options = ''
  31. self.__descent_method = 'BRANCH_FAST'
  32. self.__descent_options = ''
  33. self.__refine_method = 'IPFP'
  34. self.__refine_options = ''
  35. self.__constant_node_costs = constant_node_costs
  36. self.__labeled_nodes = (ged_env.get_num_node_labels() > 1)
  37. self.__node_del_cost = ged_env.get_node_del_cost(ged_env.get_node_label(1))
  38. self.__node_ins_cost = ged_env.get_node_ins_cost(ged_env.get_node_label(1))
  39. self.__labeled_edges = (ged_env.get_num_edge_labels() > 1)
  40. self.__edge_del_cost = ged_env.get_edge_del_cost(ged_env.get_edge_label(1))
  41. self.__edge_ins_cost = ged_env.get_edge_ins_cost(ged_env.get_edge_label(1))
  42. self.__init_type = 'RANDOM'
  43. self.__num_random_inits = 10
  44. self.__desired_num_random_inits = 10
  45. self.__use_real_randomness = True
  46. self.__seed = 0
  47. self.__parallel = True
  48. self.__update_order = True
  49. self.__sort_graphs = True # sort graphs by size when computing GEDs.
  50. self.__refine = True
  51. self.__time_limit_in_sec = 0
  52. self.__epsilon = 0.0001
  53. self.__max_itrs = 100
  54. self.__max_itrs_without_update = 3
  55. self.__num_inits_increase_order = 10
  56. self.__init_type_increase_order = 'K-MEANS++'
  57. self.__max_itrs_increase_order = 10
  58. self.__print_to_stdout = 2
  59. self.__median_id = np.inf # @todo: check
  60. self.__node_maps_from_median = {}
  61. self.__sum_of_distances = 0
  62. self.__best_init_sum_of_distances = np.inf
  63. self.__converged_sum_of_distances = np.inf
  64. self.__runtime = None
  65. self.__runtime_initialized = None
  66. self.__runtime_converged = None
  67. self.__itrs = [] # @todo: check: {} ?
  68. self.__num_decrease_order = 0
  69. self.__num_increase_order = 0
  70. self.__num_converged_descents = 0
  71. self.__state = AlgorithmState.TERMINATED
  72. self.__label_names = {}
  73. if ged_env is None:
  74. raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.')
  75. elif not ged_env.is_initialized():
  76. raise Exception('The GED environment is uninitialized. Call gedlibpy.GEDEnv.init() before passing it to the constructor of MedianGraphEstimator.')
  77. def set_options(self, options):
  78. """Sets the options of the estimator.
  79. Parameters
  80. ----------
  81. options : string
  82. String that specifies with which options to run the estimator.
  83. """
  84. self.__set_default_options()
  85. options_map = misc.options_string_to_options_map(options)
  86. for opt_name, opt_val in options_map.items():
  87. if opt_name == 'init-type':
  88. self.__init_type = opt_val
  89. if opt_val != 'MEDOID' and opt_val != 'RANDOM' and opt_val != 'MIN' and opt_val != 'MAX' and opt_val != 'MEAN':
  90. raise Exception('Invalid argument ' + opt_val + ' for option init-type. Usage: options = "[--init-type RANDOM|MEDOID|EMPTY|MIN|MAX|MEAN] [...]"')
  91. elif opt_name == 'random-inits':
  92. try:
  93. self.__num_random_inits = int(opt_val)
  94. self.__desired_num_random_inits = self.__num_random_inits
  95. except:
  96. raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"')
  97. if self.__num_random_inits <= 0:
  98. raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"')
  99. elif opt_name == 'randomness':
  100. if opt_val == 'PSEUDO':
  101. self.__use_real_randomness = False
  102. elif opt_val == 'REAL':
  103. self.__use_real_randomness = True
  104. else:
  105. raise Exception('Invalid argument "' + opt_val + '" for option randomness. Usage: options = "[--randomness REAL|PSEUDO] [...]"')
  106. elif opt_name == 'stdout':
  107. if opt_val == '0':
  108. self.__print_to_stdout = 0
  109. elif opt_val == '1':
  110. self.__print_to_stdout = 1
  111. elif opt_val == '2':
  112. self.__print_to_stdout = 2
  113. else:
  114. raise Exception('Invalid argument "' + opt_val + '" for option stdout. Usage: options = "[--stdout 0|1|2] [...]"')
  115. elif opt_name == 'parallel':
  116. if opt_val == 'TRUE':
  117. self.__parallel = True
  118. elif opt_val == 'FALSE':
  119. self.__parallel = False
  120. else:
  121. raise Exception('Invalid argument "' + opt_val + '" for option parallel. Usage: options = "[--parallel TRUE|FALSE] [...]"')
  122. elif opt_name == 'update-order':
  123. if opt_val == 'TRUE':
  124. self.__update_order = True
  125. elif opt_val == 'FALSE':
  126. self.__update_order = False
  127. else:
  128. raise Exception('Invalid argument "' + opt_val + '" for option update-order. Usage: options = "[--update-order TRUE|FALSE] [...]"')
  129. elif opt_name == 'sort-graphs':
  130. if opt_val == 'TRUE':
  131. self.__sort_graphs = True
  132. elif opt_val == 'FALSE':
  133. self.__sort_graphs = False
  134. else:
  135. raise Exception('Invalid argument "' + opt_val + '" for option sort-graphs. Usage: options = "[--sort-graphs TRUE|FALSE] [...]"')
  136. elif opt_name == 'refine':
  137. if opt_val == 'TRUE':
  138. self.__refine = True
  139. elif opt_val == 'FALSE':
  140. self.__refine = False
  141. else:
  142. raise Exception('Invalid argument "' + opt_val + '" for option refine. Usage: options = "[--refine TRUE|FALSE] [...]"')
  143. elif opt_name == 'time-limit':
  144. try:
  145. self.__time_limit_in_sec = float(opt_val)
  146. except:
  147. raise Exception('Invalid argument "' + opt_val + '" for option time-limit. Usage: options = "[--time-limit <convertible to double>] [...]')
  148. elif opt_name == 'max-itrs':
  149. try:
  150. self.__max_itrs = int(opt_val)
  151. except:
  152. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs. Usage: options = "[--max-itrs <convertible to int>] [...]')
  153. elif opt_name == 'max-itrs-without-update':
  154. try:
  155. self.__max_itrs_without_update = int(opt_val)
  156. except:
  157. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-without-update. Usage: options = "[--max-itrs-without-update <convertible to int>] [...]')
  158. elif opt_name == 'seed':
  159. try:
  160. self.__seed = int(opt_val)
  161. except:
  162. raise Exception('Invalid argument "' + opt_val + '" for option seed. Usage: options = "[--seed <convertible to int greater equal 0>] [...]')
  163. elif opt_name == 'epsilon':
  164. try:
  165. self.__epsilon = float(opt_val)
  166. except:
  167. raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]')
  168. if self.__epsilon <= 0:
  169. raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]')
  170. elif opt_name == 'inits-increase-order':
  171. try:
  172. self.__num_inits_increase_order = int(opt_val)
  173. except:
  174. raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"')
  175. if self.__num_inits_increase_order <= 0:
  176. raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"')
  177. elif opt_name == 'init-type-increase-order':
  178. self.__init_type_increase_order = opt_val
  179. if opt_val != 'CLUSTERS' and opt_val != 'K-MEANS++':
  180. raise Exception('Invalid argument ' + opt_val + ' for option init-type-increase-order. Usage: options = "[--init-type-increase-order CLUSTERS|K-MEANS++] [...]"')
  181. elif opt_name == 'max-itrs-increase-order':
  182. try:
  183. self.__max_itrs_increase_order = int(opt_val)
  184. except:
  185. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-increase-order. Usage: options = "[--max-itrs-increase-order <convertible to int>] [...]')
  186. else:
  187. valid_options = '[--init-type <arg>] [--random-inits <arg>] [--randomness <arg>] [--seed <arg>] [--stdout <arg>] '
  188. valid_options += '[--time-limit <arg>] [--max-itrs <arg>] [--epsilon <arg>] '
  189. valid_options += '[--inits-increase-order <arg>] [--init-type-increase-order <arg>] [--max-itrs-increase-order <arg>]'
  190. raise Exception('Invalid option "' + opt_name + '". Usage: options = "' + valid_options + '"')
  191. def set_init_method(self, init_method, init_options=''):
  192. """Selects method to be used for computing the initial medoid graph.
  193. Parameters
  194. ----------
  195. init_method : string
  196. The selected method. Default: ged::Options::GEDMethod::BRANCH_UNIFORM.
  197. init_options : string
  198. The options for the selected method. Default: "".
  199. Notes
  200. -----
  201. Has no effect unless "--init-type MEDOID" is passed to set_options().
  202. """
  203. self.__init_method = init_method;
  204. self.__init_options = init_options;
  205. def set_descent_method(self, descent_method, descent_options=''):
  206. """Selects method to be used for block gradient descent..
  207. Parameters
  208. ----------
  209. descent_method : string
  210. The selected method. Default: ged::Options::GEDMethod::BRANCH_FAST.
  211. descent_options : string
  212. The options for the selected method. Default: "".
  213. Notes
  214. -----
  215. Has no effect unless "--init-type MEDOID" is passed to set_options().
  216. """
  217. self.__descent_method = descent_method;
  218. self.__descent_options = descent_options;
  219. def set_refine_method(self, refine_method, refine_options):
  220. """Selects method to be used for improving the sum of distances and the node maps for the converged median.
  221. Parameters
  222. ----------
  223. refine_method : string
  224. The selected method. Default: "IPFP".
  225. refine_options : string
  226. The options for the selected method. Default: "".
  227. Notes
  228. -----
  229. Has no effect if "--refine FALSE" is passed to set_options().
  230. """
  231. self.__refine_method = refine_method
  232. self.__refine_options = refine_options
  233. def run(self, graph_ids, set_median_id, gen_median_id):
  234. """Computes a generalized median graph.
  235. Parameters
  236. ----------
  237. graph_ids : list[integer]
  238. The IDs of the graphs for which the median should be computed. Must have been added to the environment passed to the constructor.
  239. set_median_id : integer
  240. The ID of the computed set-median. A dummy graph with this ID must have been added to the environment passed to the constructor. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph().
  241. gen_median_id : integer
  242. The ID of the computed generalized median. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph().
  243. """
  244. # Sanity checks.
  245. if len(graph_ids) == 0:
  246. raise Exception('Empty vector of graph IDs, unable to compute median.')
  247. all_graphs_empty = True
  248. for graph_id in graph_ids:
  249. if self.__ged_env.get_graph_num_nodes(graph_id) > 0:
  250. all_graphs_empty = False
  251. break
  252. if all_graphs_empty:
  253. raise Exception('All graphs in the collection are empty.')
  254. # Start timer and record start time.
  255. start = time.time()
  256. timer = Timer(self.__time_limit_in_sec)
  257. self.__median_id = gen_median_id
  258. self.__state = AlgorithmState.TERMINATED
  259. # Get NetworkX graph representations of the input graphs.
  260. graphs = {}
  261. for graph_id in graph_ids:
  262. # @todo: get_nx_graph() function may need to be modified according to the coming code.
  263. graphs[graph_id] = self.__ged_env.get_nx_graph(graph_id, True, True, False)
  264. # print(self.__ged_env.get_graph_internal_id(0))
  265. # print(graphs[0].graph)
  266. # print(graphs[0].nodes(data=True))
  267. # print(graphs[0].edges(data=True))
  268. # print(nx.adjacency_matrix(graphs[0]))
  269. # Construct initial medians.
  270. medians = []
  271. self.__construct_initial_medians(graph_ids, timer, medians)
  272. end_init = time.time()
  273. self.__runtime_initialized = end_init - start
  274. # print(medians[0].graph)
  275. # print(medians[0].nodes(data=True))
  276. # print(medians[0].edges(data=True))
  277. # print(nx.adjacency_matrix(medians[0]))
  278. # Reset information about iterations and number of times the median decreases and increases.
  279. self.__itrs = [0] * len(medians)
  280. self.__num_decrease_order = 0
  281. self.__num_increase_order = 0
  282. self.__num_converged_descents = 0
  283. # Initialize the best median.
  284. best_sum_of_distances = np.inf
  285. self.__best_init_sum_of_distances = np.inf
  286. node_maps_from_best_median = {}
  287. # Run block gradient descent from all initial medians.
  288. self.__ged_env.set_method(self.__descent_method, self.__descent_options)
  289. for median_pos in range(0, len(medians)):
  290. # Terminate if the timer has expired and at least one SOD has been computed.
  291. if timer.expired() and median_pos > 0:
  292. break
  293. # Print information about current iteration.
  294. if self.__print_to_stdout == 2:
  295. print('\n===========================================================')
  296. print('Block gradient descent for initial median', str(median_pos + 1), 'of', str(len(medians)), '.')
  297. print('-----------------------------------------------------------')
  298. # Get reference to the median.
  299. median = medians[median_pos]
  300. # Load initial median into the environment.
  301. self.__ged_env.load_nx_graph(median, gen_median_id)
  302. self.__ged_env.init(self.__ged_env.get_init_type())
  303. # Compute node maps and sum of distances for initial median.
  304. # xxx = self.__node_maps_from_median
  305. self.__compute_init_node_maps(graph_ids, gen_median_id)
  306. # yyy = self.__node_maps_from_median
  307. self.__best_init_sum_of_distances = min(self.__best_init_sum_of_distances, self.__sum_of_distances)
  308. self.__ged_env.load_nx_graph(median, set_median_id)
  309. # print(self.__best_init_sum_of_distances)
  310. # Run block gradient descent from initial median.
  311. converged = False
  312. itrs_without_update = 0
  313. while not self.__termination_criterion_met(converged, timer, self.__itrs[median_pos], itrs_without_update):
  314. # Print information about current iteration.
  315. if self.__print_to_stdout == 2:
  316. print('\n===========================================================')
  317. print('Iteration', str(self.__itrs[median_pos] + 1), 'for initial median', str(median_pos + 1), 'of', str(len(medians)), '.')
  318. print('-----------------------------------------------------------')
  319. # Initialize flags that tell us what happened in the iteration.
  320. median_modified = False
  321. node_maps_modified = False
  322. decreased_order = False
  323. increased_order = False
  324. # Update the median.
  325. median_modified = self.__update_median(graphs, median)
  326. if self.__update_order:
  327. if not median_modified or self.__itrs[median_pos] == 0:
  328. decreased_order = self.__decrease_order(graphs, median)
  329. if not decreased_order or self.__itrs[median_pos] == 0:
  330. increased_order = self.__increase_order(graphs, median)
  331. # Update the number of iterations without update of the median.
  332. if median_modified or decreased_order or increased_order:
  333. itrs_without_update = 0
  334. else:
  335. itrs_without_update += 1
  336. # Print information about current iteration.
  337. if self.__print_to_stdout == 2:
  338. print('Loading median to environment: ... ', end='')
  339. # Load the median into the environment.
  340. # @todo: should this function use the original node label?
  341. self.__ged_env.load_nx_graph(median, gen_median_id)
  342. self.__ged_env.init(self.__ged_env.get_init_type())
  343. # Print information about current iteration.
  344. if self.__print_to_stdout == 2:
  345. print('done.')
  346. # Print information about current iteration.
  347. if self.__print_to_stdout == 2:
  348. print('Updating induced costs: ... ', end='')
  349. # Compute induced costs of the old node maps w.r.t. the updated median.
  350. for graph_id in graph_ids:
  351. # print(self.__node_maps_from_median[graph_id].induced_cost())
  352. # xxx = self.__node_maps_from_median[graph_id]
  353. self.__ged_env.compute_induced_cost(gen_median_id, graph_id, self.__node_maps_from_median[graph_id])
  354. # print('---------------------------------------')
  355. # print(self.__node_maps_from_median[graph_id].induced_cost())
  356. # @todo:!!!!!!!!!!!!!!!!!!!!!!!!!!!!This value is a slight different from the c++ program, which might be a bug! Use it very carefully!
  357. # Print information about current iteration.
  358. if self.__print_to_stdout == 2:
  359. print('done.')
  360. # Update the node maps.
  361. node_maps_modified = self.__update_node_maps()
  362. # Update the order of the median if no improvement can be found with the current order.
  363. # Update the sum of distances.
  364. old_sum_of_distances = self.__sum_of_distances
  365. self.__sum_of_distances = 0
  366. for graph_id, node_map in self.__node_maps_from_median.items():
  367. self.__sum_of_distances += node_map.induced_cost()
  368. # print(self.__sum_of_distances)
  369. # Print information about current iteration.
  370. if self.__print_to_stdout == 2:
  371. print('Old local SOD: ', old_sum_of_distances)
  372. print('New local SOD: ', self.__sum_of_distances)
  373. print('Best converged SOD: ', best_sum_of_distances)
  374. print('Modified median: ', median_modified)
  375. print('Modified node maps: ', node_maps_modified)
  376. print('Decreased order: ', decreased_order)
  377. print('Increased order: ', increased_order)
  378. print('===========================================================\n')
  379. converged = not (median_modified or node_maps_modified or decreased_order or increased_order)
  380. self.__itrs[median_pos] += 1
  381. # Update the best median.
  382. if self.__sum_of_distances < best_sum_of_distances:
  383. best_sum_of_distances = self.__sum_of_distances
  384. node_maps_from_best_median = self.__node_maps_from_median.copy() # @todo: this is a shallow copy, not sure if it is enough.
  385. best_median = median
  386. # Update the number of converged descents.
  387. if converged:
  388. self.__num_converged_descents += 1
  389. # Store the best encountered median.
  390. self.__sum_of_distances = best_sum_of_distances
  391. self.__node_maps_from_median = node_maps_from_best_median
  392. self.__ged_env.load_nx_graph(best_median, gen_median_id)
  393. self.__ged_env.init(self.__ged_env.get_init_type())
  394. end_descent = time.time()
  395. self.__runtime_converged = end_descent - start
  396. # Refine the sum of distances and the node maps for the converged median.
  397. self.__converged_sum_of_distances = self.__sum_of_distances
  398. if self.__refine:
  399. self.__improve_sum_of_distances(timer)
  400. # Record end time, set runtime and reset the number of initial medians.
  401. end = time.time()
  402. self.__runtime = end - start
  403. self.__num_random_inits = self.__desired_num_random_inits
  404. # Print global information.
  405. if self.__print_to_stdout != 0:
  406. print('\n===========================================================')
  407. print('Finished computation of generalized median graph.')
  408. print('-----------------------------------------------------------')
  409. print('Best SOD after initialization: ', self.__best_init_sum_of_distances)
  410. print('Converged SOD: ', self.__converged_sum_of_distances)
  411. if self.__refine:
  412. print('Refined SOD: ', self.__sum_of_distances)
  413. print('Overall runtime: ', self.__runtime)
  414. print('Runtime of initialization: ', self.__runtime_initialized)
  415. print('Runtime of block gradient descent: ', self.__runtime_converged - self.__runtime_initialized)
  416. if self.__refine:
  417. print('Runtime of refinement: ', self.__runtime - self.__runtime_converged)
  418. print('Number of initial medians: ', len(medians))
  419. total_itr = 0
  420. num_started_descents = 0
  421. for itr in self.__itrs:
  422. total_itr += itr
  423. if itr > 0:
  424. num_started_descents += 1
  425. print('Size of graph collection: ', len(graph_ids))
  426. print('Number of started descents: ', num_started_descents)
  427. print('Number of converged descents: ', self.__num_converged_descents)
  428. print('Overall number of iterations: ', total_itr)
  429. print('Overall number of times the order decreased: ', self.__num_decrease_order)
  430. print('Overall number of times the order increased: ', self.__num_increase_order)
  431. print('===========================================================\n')
  432. def __improve_sum_of_distances(self, timer): # @todo: go through and test
  433. # Use method selected for refinement phase.
  434. self.__ged_env.set_method(self.__refine_method, self.__refine_options)
  435. # Print information about current iteration.
  436. if self.__print_to_stdout == 2:
  437. progress = tqdm(desc='Improving node maps', total=len(self.__node_maps_from_median), file=sys.stdout)
  438. print('\n===========================================================')
  439. print('Improving node maps and SOD for converged median.')
  440. print('-----------------------------------------------------------')
  441. progress.update(1)
  442. # Improving the node maps.
  443. nb_nodes_median = self.__ged_env.get_graph_num_nodes(self.__gen_median_id)
  444. for graph_id, node_map in self.__node_maps_from_median.items():
  445. if time.expired():
  446. if self.__state == AlgorithmState.TERMINATED:
  447. self.__state = AlgorithmState.CONVERGED
  448. break
  449. nb_nodes_g = self.__ged_env.get_graph_num_nodes(graph_id)
  450. if nb_nodes_median <= nb_nodes_g or not self.__sort_graphs:
  451. self.__ged_env.run_method(self.__gen_median_id, graph_id)
  452. if self.__ged_env.get_upper_bound(self.__gen_median_id, graph_id) < node_map.induced_cost():
  453. self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(self.__gen_median_id, graph_id)
  454. else:
  455. self.__ged_env.run_method(graph_id, self.__gen_median_id)
  456. if self.__ged_env.get_upper_bound(graph_id, self.__gen_median_id) < node_map.induced_cost():
  457. node_map_tmp = self.__ged_env.get_node_map(graph_id, self.__gen_median_id)
  458. node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map
  459. self.__node_maps_from_median[graph_id] = node_map_tmp
  460. self.__sum_of_distances += self.__node_maps_from_median[graph_id].induced_cost()
  461. # Print information.
  462. if self.__print_to_stdout == 2:
  463. progress.update(1)
  464. self.__sum_of_distances = 0.0
  465. for key, val in self.__node_maps_from_median.items():
  466. self.__sum_of_distances += val.induced_cost()
  467. # Print information.
  468. if self.__print_to_stdout == 2:
  469. print('===========================================================\n')
  470. def __median_available(self):
  471. return self.__median_id != np.inf
  472. def get_state(self):
  473. if not self.__median_available():
  474. raise Exception('No median has been computed. Call run() before calling get_state().')
  475. return self.__state
  476. def get_sum_of_distances(self, state=''):
  477. """Returns the sum of distances.
  478. Parameters
  479. ----------
  480. state : string
  481. The state of the estimator. Can be 'initialized' or 'converged'. Default: ""
  482. Returns
  483. -------
  484. float
  485. The sum of distances (SOD) of the median when the estimator was in the state `state` during the last call to run(). If `state` is not given, the converged SOD (without refinement) or refined SOD (with refinement) is returned.
  486. """
  487. if not self.__median_available():
  488. raise Exception('No median has been computed. Call run() before calling get_sum_of_distances().')
  489. if state == 'initialized':
  490. return self.__best_init_sum_of_distances
  491. if state == 'converged':
  492. return self.__converged_sum_of_distances
  493. return self.__sum_of_distances
  494. def get_runtime(self, state):
  495. if not self.__median_available():
  496. raise Exception('No median has been computed. Call run() before calling get_runtime().')
  497. if state == AlgorithmState.INITIALIZED:
  498. return self.__runtime_initialized
  499. if state == AlgorithmState.CONVERGED:
  500. return self.__runtime_converged
  501. return self.__runtime
  502. def get_num_itrs(self):
  503. if not self.__median_available():
  504. raise Exception('No median has been computed. Call run() before calling get_num_itrs().')
  505. return self.__itrs
  506. def get_num_times_order_decreased(self):
  507. if not self.__median_available():
  508. raise Exception('No median has been computed. Call run() before calling get_num_times_order_decreased().')
  509. return self.__num_decrease_order
  510. def get_num_times_order_increased(self):
  511. if not self.__median_available():
  512. raise Exception('No median has been computed. Call run() before calling get_num_times_order_increased().')
  513. return self.__num_increase_order
  514. def get_num_converged_descents(self):
  515. if not self.__median_available():
  516. raise Exception('No median has been computed. Call run() before calling get_num_converged_descents().')
  517. return self.__num_converged_descents
  518. def get_ged_env(self):
  519. return self.__ged_env
  520. def __set_default_options(self):
  521. self.__init_type = 'RANDOM'
  522. self.__num_random_inits = 10
  523. self.__desired_num_random_inits = 10
  524. self.__use_real_randomness = True
  525. self.__seed = 0
  526. self.__parallel = True
  527. self.__update_order = True
  528. self.__sort_graphs = True
  529. self.__refine = True
  530. self.__time_limit_in_sec = 0
  531. self.__epsilon = 0.0001
  532. self.__max_itrs = 100
  533. self.__max_itrs_without_update = 3
  534. self.__num_inits_increase_order = 10
  535. self.__init_type_increase_order = 'K-MEANS++'
  536. self.__max_itrs_increase_order = 10
  537. self.__print_to_stdout = 2
  538. self.__label_names = {}
  539. def __construct_initial_medians(self, graph_ids, timer, initial_medians):
  540. # Print information about current iteration.
  541. if self.__print_to_stdout == 2:
  542. print('\n===========================================================')
  543. print('Constructing initial median(s).')
  544. print('-----------------------------------------------------------')
  545. # Compute or sample the initial median(s).
  546. initial_medians.clear()
  547. if self.__init_type == 'MEDOID':
  548. self.__compute_medoid(graph_ids, timer, initial_medians)
  549. elif self.__init_type == 'MAX':
  550. pass # @todo
  551. # compute_max_order_graph_(graph_ids, initial_medians)
  552. elif self.__init_type == 'MIN':
  553. pass # @todo
  554. # compute_min_order_graph_(graph_ids, initial_medians)
  555. elif self.__init_type == 'MEAN':
  556. pass # @todo
  557. # compute_mean_order_graph_(graph_ids, initial_medians)
  558. else:
  559. pass # @todo
  560. # sample_initial_medians_(graph_ids, initial_medians)
  561. # Print information about current iteration.
  562. if self.__print_to_stdout == 2:
  563. print('===========================================================')
  564. def __compute_medoid(self, graph_ids, timer, initial_medians):
  565. # Use method selected for initialization phase.
  566. self.__ged_env.set_method(self.__init_method, self.__init_options)
  567. # Compute the medoid.
  568. if self.__parallel:
  569. # @todo: notice when parallel self.__ged_env is not modified.
  570. sum_of_distances_list = [np.inf] * len(graph_ids)
  571. len_itr = len(graph_ids)
  572. itr = zip(graph_ids, range(0, len(graph_ids)))
  573. n_jobs = multiprocessing.cpu_count()
  574. if len_itr < 100 * n_jobs:
  575. chunksize = int(len_itr / n_jobs) + 1
  576. else:
  577. chunksize = 100
  578. def init_worker(ged_env_toshare):
  579. global G_ged_env
  580. G_ged_env = ged_env_toshare
  581. do_fun = partial(_compute_medoid_parallel, graph_ids, self.__sort_graphs)
  582. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self.__ged_env,))
  583. if self.__print_to_stdout == 2:
  584. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  585. desc='Computing medoid', file=sys.stdout)
  586. else:
  587. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  588. for i, dis in iterator:
  589. sum_of_distances_list[i] = dis
  590. pool.close()
  591. pool.join()
  592. medoid_id = np.argmin(sum_of_distances_list)
  593. best_sum_of_distances = sum_of_distances_list[medoid_id]
  594. initial_medians.append(self.__ged_env.get_nx_graph(medoid_id, True, True, False)) # @todo
  595. else:
  596. # Print information about current iteration.
  597. if self.__print_to_stdout == 2:
  598. progress = tqdm(desc='Computing medoid', total=len(graph_ids), file=sys.stdout)
  599. medoid_id = graph_ids[0]
  600. best_sum_of_distances = np.inf
  601. for g_id in graph_ids:
  602. if timer.expired():
  603. self.__state = AlgorithmState.CALLED
  604. break
  605. nb_nodes_g = self.__ged_env.get_graph_num_nodes(g_id)
  606. sum_of_distances = 0
  607. for h_id in graph_ids:
  608. nb_nodes_h = self.__ged_env.get_graph_num_nodes(h_id)
  609. if nb_nodes_g <= nb_nodes_h or not self.__sort_graphs:
  610. self.__ged_env.run_method(g_id, h_id)
  611. sum_of_distances += self.__ged_env.get_upper_bound(g_id, h_id)
  612. else:
  613. self.__ged_env.run_method(h_id, g_id)
  614. sum_of_distances += self.__ged_env.get_upper_bound(h_id, g_id)
  615. if sum_of_distances < best_sum_of_distances:
  616. best_sum_of_distances = sum_of_distances
  617. medoid_id = g_id
  618. # Print information about current iteration.
  619. if self.__print_to_stdout == 2:
  620. progress.update(1)
  621. initial_medians.append(self.__ged_env.get_nx_graph(medoid_id, True, True, False)) # @todo
  622. # Print information about current iteration.
  623. if self.__print_to_stdout == 2:
  624. print('\n')
  625. def __compute_init_node_maps(self, graph_ids, gen_median_id):
  626. # Compute node maps and sum of distances for initial median.
  627. if self.__parallel:
  628. # @todo: notice when parallel self.__ged_env is not modified.
  629. self.__sum_of_distances = 0
  630. self.__node_maps_from_median.clear()
  631. sum_of_distances_list = [0] * len(graph_ids)
  632. len_itr = len(graph_ids)
  633. itr = graph_ids
  634. n_jobs = multiprocessing.cpu_count()
  635. if len_itr < 100 * n_jobs:
  636. chunksize = int(len_itr / n_jobs) + 1
  637. else:
  638. chunksize = 100
  639. def init_worker(ged_env_toshare):
  640. global G_ged_env
  641. G_ged_env = ged_env_toshare
  642. nb_nodes_median = self.__ged_env.get_graph_num_nodes(gen_median_id)
  643. do_fun = partial(_compute_init_node_maps_parallel, gen_median_id, self.__sort_graphs, nb_nodes_median)
  644. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self.__ged_env,))
  645. if self.__print_to_stdout == 2:
  646. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  647. desc='Computing initial node maps', file=sys.stdout)
  648. else:
  649. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  650. for g_id, sod, node_maps in iterator:
  651. sum_of_distances_list[g_id] = sod
  652. self.__node_maps_from_median[g_id] = node_maps
  653. pool.close()
  654. pool.join()
  655. self.__sum_of_distances = np.sum(sum_of_distances_list)
  656. # xxx = self.__node_maps_from_median
  657. else:
  658. # Print information about current iteration.
  659. if self.__print_to_stdout == 2:
  660. progress = tqdm(desc='Computing initial node maps', total=len(graph_ids), file=sys.stdout)
  661. self.__sum_of_distances = 0
  662. self.__node_maps_from_median.clear()
  663. nb_nodes_median = self.__ged_env.get_graph_num_nodes(gen_median_id)
  664. for graph_id in graph_ids:
  665. nb_nodes_g = self.__ged_env.get_graph_num_nodes(graph_id)
  666. if nb_nodes_median <= nb_nodes_g or not self.__sort_graphs:
  667. self.__ged_env.run_method(gen_median_id, graph_id)
  668. self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(gen_median_id, graph_id)
  669. else:
  670. self.__ged_env.run_method(graph_id, gen_median_id)
  671. node_map_tmp = self.__ged_env.get_node_map(graph_id, gen_median_id)
  672. node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map
  673. self.__node_maps_from_median[graph_id] = node_map_tmp
  674. # print(self.__node_maps_from_median[graph_id])
  675. self.__sum_of_distances += self.__node_maps_from_median[graph_id].induced_cost()
  676. # print(self.__sum_of_distances)
  677. # Print information about current iteration.
  678. if self.__print_to_stdout == 2:
  679. progress.update(1)
  680. # Print information about current iteration.
  681. if self.__print_to_stdout == 2:
  682. print('\n')
  683. def __termination_criterion_met(self, converged, timer, itr, itrs_without_update):
  684. if timer.expired() or (itr >= self.__max_itrs if self.__max_itrs >= 0 else False):
  685. if self.__state == AlgorithmState.TERMINATED:
  686. self.__state = AlgorithmState.INITIALIZED
  687. return True
  688. return converged or (itrs_without_update > self.__max_itrs_without_update if self.__max_itrs_without_update >= 0 else False)
  689. def __update_median(self, graphs, median):
  690. # Print information about current iteration.
  691. if self.__print_to_stdout == 2:
  692. print('Updating median: ', end='')
  693. # Store copy of the old median.
  694. old_median = median.copy() # @todo: this is just a shallow copy.
  695. # Update the node labels.
  696. if self.__labeled_nodes:
  697. self.__update_node_labels(graphs, median)
  698. # Update the edges and their labels.
  699. self.__update_edges(graphs, median)
  700. # Print information about current iteration.
  701. if self.__print_to_stdout == 2:
  702. print('done.')
  703. return not self.__are_graphs_equal(median, old_median)
  704. def __update_node_labels(self, graphs, median):
  705. # print('----------------------------')
  706. # Print information about current iteration.
  707. if self.__print_to_stdout == 2:
  708. print('nodes ... ', end='')
  709. # Iterate through all nodes of the median.
  710. for i in range(0, nx.number_of_nodes(median)):
  711. # print('i: ', i)
  712. # Collect the labels of the substituted nodes.
  713. node_labels = []
  714. for graph_id, graph in graphs.items():
  715. # print('graph_id: ', graph_id)
  716. # print(self.__node_maps_from_median[graph_id])
  717. # print(self.__node_maps_from_median[graph_id].forward_map, self.__node_maps_from_median[graph_id].backward_map)
  718. k = self.__node_maps_from_median[graph_id].image(i)
  719. # print('k: ', k)
  720. if k != np.inf:
  721. node_labels.append(graph.nodes[k])
  722. # Compute the median label and update the median.
  723. if len(node_labels) > 0:
  724. # median_label = self.__ged_env.get_median_node_label(node_labels)
  725. median_label = self.__get_median_node_label(node_labels)
  726. if self.__ged_env.get_node_rel_cost(median.nodes[i], median_label) > self.__epsilon:
  727. nx.set_node_attributes(median, {i: median_label})
  728. def __update_edges(self, graphs, median):
  729. # Print information about current iteration.
  730. if self.__print_to_stdout == 2:
  731. print('edges ... ', end='')
  732. # # Clear the adjacency lists of the median and reset number of edges to 0.
  733. # median_edges = list(median.edges)
  734. # for (head, tail) in median_edges:
  735. # median.remove_edge(head, tail)
  736. # @todo: what if edge is not labeled?
  737. # Iterate through all possible edges (i,j) of the median.
  738. for i in range(0, nx.number_of_nodes(median)):
  739. for j in range(i + 1, nx.number_of_nodes(median)):
  740. # Collect the labels of the edges to which (i,j) is mapped by the node maps.
  741. edge_labels = []
  742. for graph_id, graph in graphs.items():
  743. k = self.__node_maps_from_median[graph_id].image(i)
  744. l = self.__node_maps_from_median[graph_id].image(j)
  745. if k != np.inf and l != np.inf:
  746. if graph.has_edge(k, l):
  747. edge_labels.append(graph.edges[(k, l)])
  748. # Compute the median edge label and the overall edge relabeling cost.
  749. rel_cost = 0
  750. median_label = self.__ged_env.get_edge_label(1)
  751. if median.has_edge(i, j):
  752. median_label = median.edges[(i, j)]
  753. if self.__labeled_edges and len(edge_labels) > 0:
  754. new_median_label = self.__get_median_edge_label(edge_labels)
  755. if self.__ged_env.get_edge_rel_cost(median_label, new_median_label) > self.__epsilon:
  756. median_label = new_median_label
  757. for edge_label in edge_labels:
  758. rel_cost += self.__ged_env.get_edge_rel_cost(median_label, edge_label)
  759. # Update the median.
  760. if median.has_edge(i, j):
  761. median.remove_edge(i, j)
  762. if rel_cost < (self.__edge_ins_cost + self.__edge_del_cost) * len(edge_labels) - self.__edge_del_cost * len(graphs):
  763. median.add_edge(i, j, **median_label)
  764. # else:
  765. # if median.has_edge(i, j):
  766. # median.remove_edge(i, j)
  767. def __update_node_maps(self):
  768. # Update the node maps.
  769. if self.__parallel:
  770. # @todo: notice when parallel self.__ged_env is not modified.
  771. node_maps_were_modified = False
  772. # xxx = self.__node_maps_from_median.copy()
  773. len_itr = len(self.__node_maps_from_median)
  774. itr = [item for item in self.__node_maps_from_median.items()]
  775. n_jobs = multiprocessing.cpu_count()
  776. if len_itr < 100 * n_jobs:
  777. chunksize = int(len_itr / n_jobs) + 1
  778. else:
  779. chunksize = 100
  780. def init_worker(ged_env_toshare):
  781. global G_ged_env
  782. G_ged_env = ged_env_toshare
  783. nb_nodes_median = self.__ged_env.get_graph_num_nodes(self.__median_id)
  784. do_fun = partial(_update_node_maps_parallel, self.__median_id, self.__epsilon, self.__sort_graphs, nb_nodes_median)
  785. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self.__ged_env,))
  786. if self.__print_to_stdout == 2:
  787. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  788. desc='Updating node maps', file=sys.stdout)
  789. else:
  790. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  791. for g_id, node_map, nm_modified in iterator:
  792. self.__node_maps_from_median[g_id] = node_map
  793. if nm_modified:
  794. node_maps_were_modified = True
  795. pool.close()
  796. pool.join()
  797. # yyy = self.__node_maps_from_median.copy()
  798. else:
  799. # Print information about current iteration.
  800. if self.__print_to_stdout == 2:
  801. progress = tqdm(desc='Updating node maps', total=len(self.__node_maps_from_median), file=sys.stdout)
  802. node_maps_were_modified = False
  803. nb_nodes_median = self.__ged_env.get_graph_num_nodes(self.__median_id)
  804. for graph_id, node_map in self.__node_maps_from_median.items():
  805. nb_nodes_g = self.__ged_env.get_graph_num_nodes(graph_id)
  806. if nb_nodes_median <= nb_nodes_g or not self.__sort_graphs:
  807. self.__ged_env.run_method(self.__median_id, graph_id)
  808. if self.__ged_env.get_upper_bound(self.__median_id, graph_id) < node_map.induced_cost() - self.__epsilon:
  809. # xxx = self.__node_maps_from_median[graph_id]
  810. self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(self.__median_id, graph_id)
  811. node_maps_were_modified = True
  812. else:
  813. self.__ged_env.run_method(graph_id, self.__median_id)
  814. if self.__ged_env.get_upper_bound(graph_id, self.__median_id) < node_map.induced_cost() - self.__epsilon:
  815. node_map_tmp = self.__ged_env.get_node_map(graph_id, self.__median_id)
  816. node_map_tmp.forward_map, node_map_tmp.backward_map = node_map_tmp.backward_map, node_map_tmp.forward_map
  817. self.__node_maps_from_median[graph_id] = node_map_tmp
  818. node_maps_were_modified = True
  819. # Print information about current iteration.
  820. if self.__print_to_stdout == 2:
  821. progress.update(1)
  822. # Print information about current iteration.
  823. if self.__print_to_stdout == 2:
  824. print('\n')
  825. # Return true if the node maps were modified.
  826. return node_maps_were_modified
  827. def __decrease_order(self, graphs, median):
  828. # Print information about current iteration
  829. if self.__print_to_stdout == 2:
  830. print('Trying to decrease order: ... ', end='')
  831. if nx.number_of_nodes(median) <= 1:
  832. if self.__print_to_stdout == 2:
  833. print('median graph has only 1 node, skip decrease.')
  834. return False
  835. # Initialize ID of the node that is to be deleted.
  836. id_deleted_node = [None] # @todo: or np.inf
  837. decreased_order = False
  838. # Decrease the order as long as the best deletion delta is negative.
  839. while self.__compute_best_deletion_delta(graphs, median, id_deleted_node) < -self.__epsilon:
  840. decreased_order = True
  841. self.__delete_node_from_median(id_deleted_node[0], median)
  842. if nx.number_of_nodes(median) <= 1:
  843. if self.__print_to_stdout == 2:
  844. print('decrease stopped because median graph remains only 1 node. ', end='')
  845. break
  846. # Print information about current iteration.
  847. if self.__print_to_stdout == 2:
  848. print('done.')
  849. # Return true iff the order was decreased.
  850. return decreased_order
  851. def __compute_best_deletion_delta(self, graphs, median, id_deleted_node):
  852. best_delta = 0.0
  853. # Determine node that should be deleted (if any).
  854. for i in range(0, nx.number_of_nodes(median)):
  855. # Compute cost delta.
  856. delta = 0.0
  857. for graph_id, graph in graphs.items():
  858. k = self.__node_maps_from_median[graph_id].image(i)
  859. if k == np.inf:
  860. delta -= self.__node_del_cost
  861. else:
  862. delta += self.__node_ins_cost - self.__ged_env.get_node_rel_cost(median.nodes[i], graph.nodes[k])
  863. for j, j_label in median[i].items():
  864. l = self.__node_maps_from_median[graph_id].image(j)
  865. if k == np.inf or l == np.inf:
  866. delta -= self.__edge_del_cost
  867. elif not graph.has_edge(k, l):
  868. delta -= self.__edge_del_cost
  869. else:
  870. delta += self.__edge_ins_cost - self.__ged_env.get_edge_rel_cost(j_label, graph.edges[(k, l)])
  871. # Update best deletion delta.
  872. if delta < best_delta - self.__epsilon:
  873. best_delta = delta
  874. id_deleted_node[0] = i
  875. # id_deleted_node[0] = 3 # @todo:
  876. return best_delta
  877. def __delete_node_from_median(self, id_deleted_node, median):
  878. # Update the median.
  879. mapping = {}
  880. for i in range(0, nx.number_of_nodes(median)):
  881. if i != id_deleted_node:
  882. new_i = (i if i < id_deleted_node else (i - 1))
  883. mapping[i] = new_i
  884. median.remove_node(id_deleted_node)
  885. nx.relabel_nodes(median, mapping, copy=False)
  886. # Update the node maps.
  887. # xxx = self.__node_maps_from_median
  888. for key, node_map in self.__node_maps_from_median.items():
  889. new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes())
  890. is_unassigned_target_node = [True] * node_map.num_target_nodes()
  891. for i in range(0, nx.number_of_nodes(median) + 1):
  892. if i != id_deleted_node:
  893. new_i = (i if i < id_deleted_node else (i - 1))
  894. k = node_map.image(i)
  895. new_node_map.add_assignment(new_i, k)
  896. if k != np.inf:
  897. is_unassigned_target_node[k] = False
  898. for k in range(0, node_map.num_target_nodes()):
  899. if is_unassigned_target_node[k]:
  900. new_node_map.add_assignment(np.inf, k)
  901. # print(self.__node_maps_from_median[key].forward_map, self.__node_maps_from_median[key].backward_map)
  902. # print(new_node_map.forward_map, new_node_map.backward_map
  903. self.__node_maps_from_median[key] = new_node_map
  904. # Increase overall number of decreases.
  905. self.__num_decrease_order += 1
  906. def __increase_order(self, graphs, median):
  907. # Print information about current iteration.
  908. if self.__print_to_stdout == 2:
  909. print('Trying to increase order: ... ', end='')
  910. # Initialize the best configuration and the best label of the node that is to be inserted.
  911. best_config = {}
  912. best_label = self.__ged_env.get_node_label(1)
  913. increased_order = False
  914. # Increase the order as long as the best insertion delta is negative.
  915. while self.__compute_best_insertion_delta(graphs, best_config, best_label) < - self.__epsilon:
  916. increased_order = True
  917. self.__add_node_to_median(best_config, best_label, median)
  918. # Print information about current iteration.
  919. if self.__print_to_stdout == 2:
  920. print('done.')
  921. # Return true iff the order was increased.
  922. return increased_order
  923. def __compute_best_insertion_delta(self, graphs, best_config, best_label):
  924. # Construct sets of inserted nodes.
  925. no_inserted_node = True
  926. inserted_nodes = {}
  927. for graph_id, graph in graphs.items():
  928. inserted_nodes[graph_id] = []
  929. best_config[graph_id] = np.inf
  930. for k in range(nx.number_of_nodes(graph)):
  931. if self.__node_maps_from_median[graph_id].pre_image(k) == np.inf:
  932. no_inserted_node = False
  933. inserted_nodes[graph_id].append((k, tuple(item for item in graph.nodes[k].items()))) # @todo: can order of label names be garantteed?
  934. # Return 0.0 if no node is inserted in any of the graphs.
  935. if no_inserted_node:
  936. return 0.0
  937. # Compute insertion configuration, label, and delta.
  938. best_delta = 0.0 # @todo
  939. if len(self.__label_names['node_labels']) == 0 and len(self.__label_names['node_attrs']) == 0: # @todo
  940. best_delta = self.__compute_insertion_delta_unlabeled(inserted_nodes, best_config, best_label)
  941. elif len(self.__label_names['node_labels']) > 0: # self.__constant_node_costs:
  942. best_delta = self.__compute_insertion_delta_constant(inserted_nodes, best_config, best_label)
  943. else:
  944. best_delta = self.__compute_insertion_delta_generic(inserted_nodes, best_config, best_label)
  945. # Return the best delta.
  946. return best_delta
  947. def __compute_insertion_delta_unlabeled(self, inserted_nodes, best_config, best_label): # @todo: go through and test.
  948. # Construct the nest configuration and compute its insertion delta.
  949. best_delta = 0.0
  950. best_config.clear()
  951. for graph_id, node_set in inserted_nodes.items():
  952. if len(node_set) == 0:
  953. best_config[graph_id] = np.inf
  954. best_delta += self.__node_del_cost
  955. else:
  956. best_config[graph_id] = node_set[0][0]
  957. best_delta -= self.__node_ins_cost
  958. # Return the best insertion delta.
  959. return best_delta
  960. def __compute_insertion_delta_constant(self, inserted_nodes, best_config, best_label):
  961. # Construct histogram and inverse label maps.
  962. hist = {}
  963. inverse_label_maps = {}
  964. for graph_id, node_set in inserted_nodes.items():
  965. inverse_label_maps[graph_id] = {}
  966. for node in node_set:
  967. k = node[0]
  968. label = node[1]
  969. if label not in inverse_label_maps[graph_id]:
  970. inverse_label_maps[graph_id][label] = k
  971. if label not in hist:
  972. hist[label] = 1
  973. else:
  974. hist[label] += 1
  975. # Determine the best label.
  976. best_count = 0
  977. for key, val in hist.items():
  978. if val > best_count:
  979. best_count = val
  980. best_label_tuple = key
  981. # get best label.
  982. best_label.clear()
  983. for key, val in best_label_tuple:
  984. best_label[key] = val
  985. # Construct the best configuration and compute its insertion delta.
  986. best_config.clear()
  987. best_delta = 0.0
  988. node_rel_cost = self.__ged_env.get_node_rel_cost(self.__ged_env.get_node_label(1), self.__ged_env.get_node_label(2))
  989. triangle_ineq_holds = (node_rel_cost <= self.__node_del_cost + self.__node_ins_cost)
  990. for graph_id, _ in inserted_nodes.items():
  991. if best_label_tuple in inverse_label_maps[graph_id]:
  992. best_config[graph_id] = inverse_label_maps[graph_id][best_label_tuple]
  993. best_delta -= self.__node_ins_cost
  994. elif triangle_ineq_holds and not len(inserted_nodes[graph_id]) == 0:
  995. best_config[graph_id] = inserted_nodes[graph_id][0][0]
  996. best_delta += node_rel_cost - self.__node_ins_cost
  997. else:
  998. best_config[graph_id] = np.inf
  999. best_delta += self.__node_del_cost
  1000. # Return the best insertion delta.
  1001. return best_delta
  1002. def __compute_insertion_delta_generic(self, inserted_nodes, best_config, best_label):
  1003. # Collect all node labels of inserted nodes.
  1004. node_labels = []
  1005. for _, node_set in inserted_nodes.items():
  1006. for node in node_set:
  1007. node_labels.append(node[1])
  1008. # Compute node label medians that serve as initial solutions for block gradient descent.
  1009. initial_node_labels = []
  1010. self.__compute_initial_node_labels(node_labels, initial_node_labels)
  1011. # Determine best insertion configuration, label, and delta via parallel block gradient descent from all initial node labels.
  1012. best_delta = 0.0
  1013. for node_label in initial_node_labels:
  1014. # Construct local configuration.
  1015. config = {}
  1016. for graph_id, _ in inserted_nodes.items():
  1017. config[graph_id] = tuple((np.inf, tuple(item for item in self.__ged_env.get_node_label(1).items())))
  1018. # Run block gradient descent.
  1019. converged = False
  1020. itr = 0
  1021. while not self.__insertion_termination_criterion_met(converged, itr):
  1022. converged = not self.__update_config(node_label, inserted_nodes, config, node_labels)
  1023. node_label_dict = dict(node_label)
  1024. converged = converged and (not self.__update_node_label([dict(item) for item in node_labels], node_label_dict)) # @todo: the dict is tupled again in the function, can be better.
  1025. node_label = tuple(item for item in node_label_dict.items()) # @todo: watch out: initial_node_labels[i] is not modified here.
  1026. itr += 1
  1027. # Compute insertion delta of converged solution.
  1028. delta = 0.0
  1029. for _, node in config.items():
  1030. if node[0] == np.inf:
  1031. delta += self.__node_del_cost
  1032. else:
  1033. delta += self.__ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self.__node_ins_cost
  1034. # Update best delta and global configuration if improvement has been found.
  1035. if delta < best_delta - self.__epsilon:
  1036. best_delta = delta
  1037. best_label.clear()
  1038. for key, val in node_label:
  1039. best_label[key] = val
  1040. best_config.clear()
  1041. for graph_id, val in config.items():
  1042. best_config[graph_id] = val[0]
  1043. # Return the best delta.
  1044. return best_delta
  1045. def __compute_initial_node_labels(self, node_labels, median_labels):
  1046. median_labels.clear()
  1047. if self.__use_real_randomness: # @todo: may not work if parallelized.
  1048. rng = np.random.randint(0, high=2**32 - 1, size=1)
  1049. urng = np.random.RandomState(seed=rng[0])
  1050. else:
  1051. urng = np.random.RandomState(seed=self.__seed)
  1052. # Generate the initial node label medians.
  1053. if self.__init_type_increase_order == 'K-MEANS++':
  1054. # Use k-means++ heuristic to generate the initial node label medians.
  1055. already_selected = [False] * len(node_labels)
  1056. selected_label_id = urng.randint(low=0, high=len(node_labels), size=1)[0] # c++ test: 23
  1057. median_labels.append(node_labels[selected_label_id])
  1058. already_selected[selected_label_id] = True
  1059. # xxx = [41, 0, 18, 9, 6, 14, 21, 25, 33] for c++ test
  1060. # iii = 0 for c++ test
  1061. while len(median_labels) < self.__num_inits_increase_order:
  1062. weights = [np.inf] * len(node_labels)
  1063. for label_id in range(0, len(node_labels)):
  1064. if already_selected[label_id]:
  1065. weights[label_id] = 0
  1066. continue
  1067. for label in median_labels:
  1068. weights[label_id] = min(weights[label_id], self.__ged_env.get_node_rel_cost(dict(label), dict(node_labels[label_id])))
  1069. # get non-zero weights.
  1070. weights_p, idx_p = [], []
  1071. for i, w in enumerate(weights):
  1072. if w != 0:
  1073. weights_p.append(w)
  1074. idx_p.append(i)
  1075. if len(weights_p) > 0:
  1076. p = np.array(weights_p) / np.sum(weights_p)
  1077. selected_label_id = urng.choice(range(0, len(weights_p)), size=1, p=p)[0] # for c++ test: xxx[iii]
  1078. selected_label_id = idx_p[selected_label_id]
  1079. # iii += 1 for c++ test
  1080. median_labels.append(node_labels[selected_label_id])
  1081. already_selected[selected_label_id] = True
  1082. else: # skip the loop when all node_labels are selected. This happens when len(node_labels) <= self.__num_inits_increase_order.
  1083. break
  1084. else:
  1085. # Compute the initial node medians as the medians of randomly generated clusters of (roughly) equal size.
  1086. # @todo: go through and test.
  1087. shuffled_node_labels = [np.inf] * len(node_labels) #@todo: random?
  1088. # @todo: std::shuffle(shuffled_node_labels.begin(), shuffled_node_labels.end(), urng);?
  1089. cluster_size = len(node_labels) / self.__num_inits_increase_order
  1090. pos = 0.0
  1091. cluster = []
  1092. while len(median_labels) < self.__num_inits_increase_order - 1:
  1093. while pos < (len(median_labels) + 1) * cluster_size:
  1094. cluster.append(shuffled_node_labels[pos])
  1095. pos += 1
  1096. median_labels.append(self.__get_median_node_label(cluster))
  1097. cluster.clear()
  1098. while pos < len(shuffled_node_labels):
  1099. pos += 1
  1100. cluster.append(shuffled_node_labels[pos])
  1101. median_labels.append(self.__get_median_node_label(cluster))
  1102. cluster.clear()
  1103. # Run Lloyd's Algorithm.
  1104. converged = False
  1105. closest_median_ids = [np.inf] * len(node_labels)
  1106. clusters = [[] for _ in range(len(median_labels))]
  1107. itr = 1
  1108. while not self.__insertion_termination_criterion_met(converged, itr):
  1109. converged = not self.__update_clusters(node_labels, median_labels, closest_median_ids)
  1110. if not converged:
  1111. for cluster in clusters:
  1112. cluster.clear()
  1113. for label_id in range(0, len(node_labels)):
  1114. clusters[closest_median_ids[label_id]].append(node_labels[label_id])
  1115. for cluster_id in range(0, len(clusters)):
  1116. node_label = dict(median_labels[cluster_id])
  1117. self.__update_node_label([dict(item) for item in clusters[cluster_id]], node_label) # @todo: the dict is tupled again in the function, can be better.
  1118. median_labels[cluster_id] = tuple(item for item in node_label.items())
  1119. itr += 1
  1120. def __insertion_termination_criterion_met(self, converged, itr):
  1121. return converged or (itr >= self.__max_itrs_increase_order if self.__max_itrs_increase_order > 0 else False)
  1122. def __update_config(self, node_label, inserted_nodes, config, node_labels):
  1123. # Determine the best configuration.
  1124. config_modified = False
  1125. for graph_id, node_set in inserted_nodes.items():
  1126. best_assignment = config[graph_id]
  1127. best_cost = 0.0
  1128. if best_assignment[0] == np.inf:
  1129. best_cost = self.__node_del_cost
  1130. else:
  1131. best_cost = self.__ged_env.get_node_rel_cost(dict(node_label), dict(best_assignment[1])) - self.__node_ins_cost
  1132. for node in node_set:
  1133. cost = self.__ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self.__node_ins_cost
  1134. if cost < best_cost - self.__epsilon:
  1135. best_cost = cost
  1136. best_assignment = node
  1137. config_modified = True
  1138. if self.__node_del_cost < best_cost - self.__epsilon:
  1139. best_cost = self.__node_del_cost
  1140. best_assignment = tuple((np.inf, best_assignment[1]))
  1141. config_modified = True
  1142. config[graph_id] = best_assignment
  1143. # Collect the node labels contained in the best configuration.
  1144. node_labels.clear()
  1145. for key, val in config.items():
  1146. if val[0] != np.inf:
  1147. node_labels.append(val[1])
  1148. # Return true if the configuration was modified.
  1149. return config_modified
  1150. def __update_node_label(self, node_labels, node_label):
  1151. if len(node_labels) == 0: # @todo: check if this is the correct solution. Especially after calling __update_config().
  1152. return False
  1153. new_node_label = self.__get_median_node_label(node_labels)
  1154. if self.__ged_env.get_node_rel_cost(new_node_label, node_label) > self.__epsilon:
  1155. node_label.clear()
  1156. for key, val in new_node_label.items():
  1157. node_label[key] = val
  1158. return True
  1159. return False
  1160. def __update_clusters(self, node_labels, median_labels, closest_median_ids):
  1161. # Determine the closest median for each node label.
  1162. clusters_modified = False
  1163. for label_id in range(0, len(node_labels)):
  1164. closest_median_id = np.inf
  1165. dist_to_closest_median = np.inf
  1166. for median_id in range(0, len(median_labels)):
  1167. dist_to_median = self.__ged_env.get_node_rel_cost(dict(median_labels[median_id]), dict(node_labels[label_id]))
  1168. if dist_to_median < dist_to_closest_median - self.__epsilon:
  1169. dist_to_closest_median = dist_to_median
  1170. closest_median_id = median_id
  1171. if closest_median_id != closest_median_ids[label_id]:
  1172. closest_median_ids[label_id] = closest_median_id
  1173. clusters_modified = True
  1174. # Return true if the clusters were modified.
  1175. return clusters_modified
  1176. def __add_node_to_median(self, best_config, best_label, median):
  1177. # Update the median.
  1178. nb_nodes_median = nx.number_of_nodes(median)
  1179. median.add_node(nb_nodes_median, **best_label)
  1180. # Update the node maps.
  1181. for graph_id, node_map in self.__node_maps_from_median.items():
  1182. node_map_as_rel = []
  1183. node_map.as_relation(node_map_as_rel)
  1184. new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes())
  1185. for assignment in node_map_as_rel:
  1186. new_node_map.add_assignment(assignment[0], assignment[1])
  1187. new_node_map.add_assignment(nx.number_of_nodes(median) - 1, best_config[graph_id])
  1188. self.__node_maps_from_median[graph_id] = new_node_map
  1189. # Increase overall number of increases.
  1190. self.__num_increase_order += 1
  1191. def __are_graphs_equal(self, g1, g2):
  1192. """
  1193. Check if the two graphs are equal.
  1194. Parameters
  1195. ----------
  1196. g1 : NetworkX graph object
  1197. Graph 1 to be compared.
  1198. g2 : NetworkX graph object
  1199. Graph 2 to be compared.
  1200. Returns
  1201. -------
  1202. bool
  1203. True if the two graph are equal.
  1204. Notes
  1205. -----
  1206. This is not an identical check. Here the two graphs are equal if and only if their original_node_ids, nodes, all node labels, edges and all edge labels are equal. This function is specifically designed for class `MedianGraphEstimator` and should not be used elsewhere.
  1207. """
  1208. # check original node ids.
  1209. if not g1.graph['original_node_ids'] == g2.graph['original_node_ids']:
  1210. return False
  1211. # check nodes.
  1212. nlist1 = [n for n in g1.nodes(data=True)]
  1213. nlist2 = [n for n in g2.nodes(data=True)]
  1214. if not nlist1 == nlist2:
  1215. return False
  1216. # check edges.
  1217. elist1 = [n for n in g1.edges(data=True)]
  1218. elist2 = [n for n in g2.edges(data=True)]
  1219. if not elist1 == elist2:
  1220. return False
  1221. return True
  1222. def compute_my_cost(g, h, node_map):
  1223. cost = 0.0
  1224. for node in g.nodes:
  1225. cost += 0
  1226. def set_label_names(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  1227. self.__label_names = {'node_labels': node_labels, 'edge_labels': edge_labels,
  1228. 'node_attrs': node_attrs, 'edge_attrs': edge_attrs}
  1229. def __get_median_node_label(self, node_labels):
  1230. if len(self.__label_names['node_labels']) > 0:
  1231. return self.__get_median_label_symbolic(node_labels)
  1232. elif len(self.__label_names['node_attrs']) > 0:
  1233. return self.__get_median_label_nonsymbolic(node_labels)
  1234. else:
  1235. raise Exception('Node label names are not given.')
  1236. def __get_median_edge_label(self, edge_labels):
  1237. if len(self.__label_names['edge_labels']) > 0:
  1238. return self.__get_median_label_symbolic(edge_labels)
  1239. elif len(self.__label_names['edge_attrs']) > 0:
  1240. return self.__get_median_label_nonsymbolic(edge_labels)
  1241. else:
  1242. raise Exception('Edge label names are not given.')
  1243. def __get_median_label_symbolic(self, labels):
  1244. # Construct histogram.
  1245. hist = {}
  1246. for label in labels:
  1247. label = tuple([kv for kv in label.items()]) # @todo: this may be slow.
  1248. if label not in hist:
  1249. hist[label] = 1
  1250. else:
  1251. hist[label] += 1
  1252. # Return the label that appears most frequently.
  1253. best_count = 0
  1254. median_label = {}
  1255. for label, count in hist.items():
  1256. if count > best_count:
  1257. best_count = count
  1258. median_label = {kv[0]: kv[1] for kv in label}
  1259. return median_label
  1260. def __get_median_label_nonsymbolic(self, labels):
  1261. if len(labels) == 0:
  1262. return {} # @todo
  1263. else:
  1264. # Transform the labels into coordinates and compute mean label as initial solution.
  1265. labels_as_coords = []
  1266. sums = {}
  1267. for key, val in labels[0].items():
  1268. sums[key] = 0
  1269. for label in labels:
  1270. coords = {}
  1271. for key, val in label.items():
  1272. label_f = float(val)
  1273. sums[key] += label_f
  1274. coords[key] = label_f
  1275. labels_as_coords.append(coords)
  1276. median = {}
  1277. for key, val in sums.items():
  1278. median[key] = val / len(labels)
  1279. # Run main loop of Weiszfeld's Algorithm.
  1280. epsilon = 0.0001
  1281. delta = 1.0
  1282. num_itrs = 0
  1283. all_equal = False
  1284. while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)):
  1285. numerator = {}
  1286. for key, val in sums.items():
  1287. numerator[key] = 0
  1288. denominator = 0
  1289. for label_as_coord in labels_as_coords:
  1290. norm = 0
  1291. for key, val in label_as_coord.items():
  1292. norm += (val - median[key]) ** 2
  1293. norm = np.sqrt(norm)
  1294. if norm > 0:
  1295. for key, val in label_as_coord.items():
  1296. numerator[key] += val / norm
  1297. denominator += 1.0 / norm
  1298. if denominator == 0:
  1299. all_equal = True
  1300. else:
  1301. new_median = {}
  1302. delta = 0.0
  1303. for key, val in numerator.items():
  1304. this_median = val / denominator
  1305. new_median[key] = this_median
  1306. delta += np.abs(median[key] - this_median)
  1307. median = new_median
  1308. num_itrs += 1
  1309. # Transform the solution to strings and return it.
  1310. median_label = {}
  1311. for key, val in median.items():
  1312. median_label[key] = str(val)
  1313. return median_label
  1314. # def __get_median_edge_label_symbolic(self, edge_labels):
  1315. # pass
  1316. # def __get_median_edge_label_nonsymbolic(self, edge_labels):
  1317. # if len(edge_labels) == 0:
  1318. # return {}
  1319. # else:
  1320. # # Transform the labels into coordinates and compute mean label as initial solution.
  1321. # edge_labels_as_coords = []
  1322. # sums = {}
  1323. # for key, val in edge_labels[0].items():
  1324. # sums[key] = 0
  1325. # for edge_label in edge_labels:
  1326. # coords = {}
  1327. # for key, val in edge_label.items():
  1328. # label = float(val)
  1329. # sums[key] += label
  1330. # coords[key] = label
  1331. # edge_labels_as_coords.append(coords)
  1332. # median = {}
  1333. # for key, val in sums.items():
  1334. # median[key] = val / len(edge_labels)
  1335. #
  1336. # # Run main loop of Weiszfeld's Algorithm.
  1337. # epsilon = 0.0001
  1338. # delta = 1.0
  1339. # num_itrs = 0
  1340. # all_equal = False
  1341. # while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)):
  1342. # numerator = {}
  1343. # for key, val in sums.items():
  1344. # numerator[key] = 0
  1345. # denominator = 0
  1346. # for edge_label_as_coord in edge_labels_as_coords:
  1347. # norm = 0
  1348. # for key, val in edge_label_as_coord.items():
  1349. # norm += (val - median[key]) ** 2
  1350. # norm += np.sqrt(norm)
  1351. # if norm > 0:
  1352. # for key, val in edge_label_as_coord.items():
  1353. # numerator[key] += val / norm
  1354. # denominator += 1.0 / norm
  1355. # if denominator == 0:
  1356. # all_equal = True
  1357. # else:
  1358. # new_median = {}
  1359. # delta = 0.0
  1360. # for key, val in numerator.items():
  1361. # this_median = val / denominator
  1362. # new_median[key] = this_median
  1363. # delta += np.abs(median[key] - this_median)
  1364. # median = new_median
  1365. #
  1366. # num_itrs += 1
  1367. #
  1368. # # Transform the solution to ged::GXLLabel and return it.
  1369. # median_label = {}
  1370. # for key, val in median.items():
  1371. # median_label[key] = str(val)
  1372. # return median_label
  1373. def _compute_medoid_parallel(graph_ids, sort, itr):
  1374. g_id = itr[0]
  1375. i = itr[1]
  1376. # @todo: timer not considered here.
  1377. # if timer.expired():
  1378. # self.__state = AlgorithmState.CALLED
  1379. # break
  1380. nb_nodes_g = G_ged_env.get_graph_num_nodes(g_id)
  1381. sum_of_distances = 0
  1382. for h_id in graph_ids:
  1383. nb_nodes_h = G_ged_env.get_graph_num_nodes(h_id)
  1384. if nb_nodes_g <= nb_nodes_h or not sort:
  1385. G_ged_env.run_method(g_id, h_id)
  1386. sum_of_distances += G_ged_env.get_upper_bound(g_id, h_id)
  1387. else:
  1388. G_ged_env.run_method(h_id, g_id)
  1389. sum_of_distances += G_ged_env.get_upper_bound(h_id, g_id)
  1390. return i, sum_of_distances
  1391. def _compute_init_node_maps_parallel(gen_median_id, sort, nb_nodes_median, itr):
  1392. graph_id = itr
  1393. nb_nodes_g = G_ged_env.get_graph_num_nodes(graph_id)
  1394. if nb_nodes_median <= nb_nodes_g or not sort:
  1395. G_ged_env.run_method(gen_median_id, graph_id)
  1396. node_map = G_ged_env.get_node_map(gen_median_id, graph_id)
  1397. # print(self.__node_maps_from_median[graph_id])
  1398. else:
  1399. G_ged_env.run_method(graph_id, gen_median_id)
  1400. node_map = G_ged_env.get_node_map(graph_id, gen_median_id)
  1401. node_map.forward_map, node_map.backward_map = node_map.backward_map, node_map.forward_map
  1402. sum_of_distance = node_map.induced_cost()
  1403. # print(self.__sum_of_distances)
  1404. return graph_id, sum_of_distance, node_map
  1405. def _update_node_maps_parallel(median_id, epsilon, sort, nb_nodes_median, itr):
  1406. graph_id = itr[0]
  1407. node_map = itr[1]
  1408. node_maps_were_modified = False
  1409. nb_nodes_g = G_ged_env.get_graph_num_nodes(graph_id)
  1410. if nb_nodes_median <= nb_nodes_g or not sort:
  1411. G_ged_env.run_method(median_id, graph_id)
  1412. if G_ged_env.get_upper_bound(median_id, graph_id) < node_map.induced_cost() - epsilon:
  1413. node_map = G_ged_env.get_node_map(median_id, graph_id)
  1414. node_maps_were_modified = True
  1415. else:
  1416. G_ged_env.run_method(graph_id, median_id)
  1417. if G_ged_env.get_upper_bound(graph_id, median_id) < node_map.induced_cost() - epsilon:
  1418. node_map = G_ged_env.get_node_map(graph_id, median_id)
  1419. node_map.forward_map, node_map.backward_map = node_map.backward_map, node_map.forward_map
  1420. node_maps_were_modified = True
  1421. return graph_id, node_map, node_maps_were_modified

A Python package for graph kernels, graph edit distances and graph pre-image problem.