You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

xp_letter_h.py 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Jan 14 15:39:29 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import random
  9. import csv
  10. from shutil import copyfile
  11. import networkx as nx
  12. import matplotlib.pyplot as plt
  13. import sys
  14. sys.path.insert(0, "../")
  15. from pygraph.utils.graphfiles import loadDataset, loadGXL, saveGXL
  16. from preimage.test_k_closest_graphs import median_on_k_closest_graphs, reform_attributes
  17. from preimage.utils import get_same_item_indices
  18. from preimage.find_best_k import getRelations
  19. def xp_letter_h_LETTER2_cost():
  20. ds = {'dataset': '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/data/collections/Letter.xml',
  21. 'graph_dir': '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/data/datasets/Letter/HIGH/'} # node/edge symb
  22. Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir'])
  23. for G in Gn:
  24. reform_attributes(G)
  25. # ds = {'name': 'Letter-high',
  26. # 'dataset': '../datasets/Letter-high/Letter-high_A.txt'} # node/edge symb
  27. # Gn, y_all = loadDataset(ds['dataset'])
  28. # Gn = Gn[0:50]
  29. gkernel = 'structuralspkernel'
  30. node_label = None
  31. edge_label = None
  32. ds_name = 'letter-h'
  33. dir_output = 'results/xp_letter_h/'
  34. save_results = True
  35. cost = 'LETTER2'
  36. repeats = 1
  37. # k_list = range(2, 11)
  38. k_list = [150]
  39. fit_method = 'k-graphs'
  40. # get indices by classes.
  41. y_idx = get_same_item_indices(y_all)
  42. if save_results:
  43. # create result files.
  44. fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv'
  45. f_detail = open(dir_output + fn_output_detail, 'a')
  46. csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k',
  47. 'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM',
  48. 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM',
  49. 'dis_k gi -> GM', 'median set'])
  50. f_detail.close()
  51. fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv'
  52. f_summary = open(dir_output + fn_output_summary, 'a')
  53. csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k',
  54. 'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM',
  55. 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM',
  56. 'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM',
  57. '# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM',
  58. 'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM',
  59. 'repeats better dis_k gi -> GM'])
  60. f_summary.close()
  61. random.seed(1)
  62. rdn_seed_list = random.sample(range(0, repeats * 100), repeats)
  63. for k in k_list:
  64. print('\n--------- k =', k, '----------')
  65. sod_sm_mean_list = []
  66. sod_gm_mean_list = []
  67. dis_k_sm_mean_list = []
  68. dis_k_gm_mean_list = []
  69. dis_k_gi_min_mean_list = []
  70. # nb_sod_sm2gm = [0, 0, 0]
  71. # nb_dis_k_sm2gm = [0, 0, 0]
  72. # nb_dis_k_gi2sm = [0, 0, 0]
  73. # nb_dis_k_gi2gm = [0, 0, 0]
  74. # repeats_better_sod_sm2gm = []
  75. # repeats_better_dis_k_sm2gm = []
  76. # repeats_better_dis_k_gi2sm = []
  77. # repeats_better_dis_k_gi2gm = []
  78. for i, (y, values) in enumerate(y_idx.items()):
  79. print('\ny =', y)
  80. # y = 'F'
  81. # values = y_idx[y]
  82. # values = values[0:10]
  83. k = len(values)
  84. sod_sm_list = []
  85. sod_gm_list = []
  86. dis_k_sm_list = []
  87. dis_k_gm_list = []
  88. dis_k_gi_min_list = []
  89. nb_sod_sm2gm = [0, 0, 0]
  90. nb_dis_k_sm2gm = [0, 0, 0]
  91. nb_dis_k_gi2sm = [0, 0, 0]
  92. nb_dis_k_gi2gm = [0, 0, 0]
  93. repeats_better_sod_sm2gm = []
  94. repeats_better_dis_k_sm2gm = []
  95. repeats_better_dis_k_gi2sm = []
  96. repeats_better_dis_k_gi2gm = []
  97. for repeat in range(repeats):
  98. print('\nrepeat =', repeat)
  99. random.seed(rdn_seed_list[repeat])
  100. median_set_idx_idx = random.sample(range(0, len(values)), k)
  101. median_set_idx = [values[idx] for idx in median_set_idx_idx]
  102. print('median set: ', median_set_idx)
  103. Gn_median = [Gn[g] for g in values]
  104. sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min \
  105. = median_on_k_closest_graphs(Gn_median, node_label, edge_label,
  106. gkernel, k, fit_method=fit_method, graph_dir=ds['graph_dir'],
  107. edit_costs=None, group_min=median_set_idx_idx,
  108. dataset='Letter', cost=cost, parallel=False)
  109. # write result detail.
  110. sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm))
  111. dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm))
  112. dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min))
  113. dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min))
  114. if save_results:
  115. f_detail = open(dir_output + fn_output_detail, 'a')
  116. csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k,
  117. y, repeat,
  118. sod_sm, sod_gm, dis_k_sm, dis_k_gm,
  119. dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm,
  120. dis_k_gi2gm, median_set_idx])
  121. f_detail.close()
  122. # compute result summary.
  123. sod_sm_list.append(sod_sm)
  124. sod_gm_list.append(sod_gm)
  125. dis_k_sm_list.append(dis_k_sm)
  126. dis_k_gm_list.append(dis_k_gm)
  127. dis_k_gi_min_list.append(dis_k_gi_min)
  128. # # SOD SM -> GM
  129. if sod_sm > sod_gm:
  130. nb_sod_sm2gm[0] += 1
  131. repeats_better_sod_sm2gm.append(repeat)
  132. elif sod_sm == sod_gm:
  133. nb_sod_sm2gm[1] += 1
  134. elif sod_sm < sod_gm:
  135. nb_sod_sm2gm[2] += 1
  136. # # dis_k SM -> GM
  137. if dis_k_sm > dis_k_gm:
  138. nb_dis_k_sm2gm[0] += 1
  139. repeats_better_dis_k_sm2gm.append(repeat)
  140. elif dis_k_sm == dis_k_gm:
  141. nb_dis_k_sm2gm[1] += 1
  142. elif dis_k_sm < dis_k_gm:
  143. nb_dis_k_sm2gm[2] += 1
  144. # # dis_k gi -> SM
  145. if dis_k_gi_min > dis_k_sm:
  146. nb_dis_k_gi2sm[0] += 1
  147. repeats_better_dis_k_gi2sm.append(repeat)
  148. elif dis_k_gi_min == dis_k_sm:
  149. nb_dis_k_gi2sm[1] += 1
  150. elif dis_k_gi_min < dis_k_sm:
  151. nb_dis_k_gi2sm[2] += 1
  152. # # dis_k gi -> GM
  153. if dis_k_gi_min > dis_k_gm:
  154. nb_dis_k_gi2gm[0] += 1
  155. repeats_better_dis_k_gi2gm.append(repeat)
  156. elif dis_k_gi_min == dis_k_gm:
  157. nb_dis_k_gi2gm[1] += 1
  158. elif dis_k_gi_min < dis_k_gm:
  159. nb_dis_k_gi2gm[2] += 1
  160. # save median graphs.
  161. fname_sm = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/output/tmp_ged/set_median.gxl'
  162. fn_pre_sm_new = dir_output + 'medians/set_median.' + fit_method \
  163. + '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat)
  164. copyfile(fname_sm, fn_pre_sm_new + '.gxl')
  165. fname_gm = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/output/tmp_ged/gen_median.gxl'
  166. fn_pre_gm_new = dir_output + 'medians/gen_median.' + fit_method \
  167. + '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat)
  168. copyfile(fname_gm, fn_pre_gm_new + '.gxl')
  169. G_best_kernel = Gn_median[idx_dis_k_gi_min].copy()
  170. reform_attributes(G_best_kernel)
  171. fn_pre_g_best_kernel = dir_output + 'medians/g_best_kernel.' + fit_method \
  172. + '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat)
  173. saveGXL(G_best_kernel, fn_pre_g_best_kernel + '.gxl', method='gedlib-letter')
  174. # plot median graphs.
  175. set_median = loadGXL(fn_pre_sm_new + '.gxl')
  176. gen_median = loadGXL(fn_pre_gm_new + '.gxl')
  177. draw_Letter_graph(set_median, fn_pre_sm_new)
  178. draw_Letter_graph(gen_median, fn_pre_gm_new)
  179. draw_Letter_graph(G_best_kernel, fn_pre_g_best_kernel)
  180. # write result summary for each letter.
  181. sod_sm_mean_list.append(np.mean(sod_sm_list))
  182. sod_gm_mean_list.append(np.mean(sod_gm_list))
  183. dis_k_sm_mean_list.append(np.mean(dis_k_sm_list))
  184. dis_k_gm_mean_list.append(np.mean(dis_k_gm_list))
  185. dis_k_gi_min_mean_list.append(np.mean(dis_k_gi_min_list))
  186. sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean_list[-1] - sod_sm_mean_list[-1]))
  187. dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_sm_mean_list[-1]))
  188. dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean_list[-1] - dis_k_gi_min_mean_list[-1]))
  189. dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_gi_min_mean_list[-1]))
  190. if save_results:
  191. f_summary = open(dir_output + fn_output_summary, 'a')
  192. csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, y,
  193. sod_sm_mean_list[-1], sod_gm_mean_list[-1],
  194. dis_k_sm_mean_list[-1], dis_k_gm_mean_list[-1],
  195. dis_k_gi_min_mean_list[-1], sod_sm2gm_mean, dis_k_sm2gm_mean,
  196. dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm,
  197. nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm,
  198. repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm,
  199. repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm])
  200. f_summary.close()
  201. # write result summary for each letter.
  202. sod_sm_mean = np.mean(sod_sm_mean_list)
  203. sod_gm_mean = np.mean(sod_gm_mean_list)
  204. dis_k_sm_mean = np.mean(dis_k_sm_mean_list)
  205. dis_k_gm_mean = np.mean(dis_k_gm_mean_list)
  206. dis_k_gi_min_mean = np.mean(dis_k_gi_min_list)
  207. sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean))
  208. dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean))
  209. dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean))
  210. dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean))
  211. if save_results:
  212. f_summary = open(dir_output + fn_output_summary, 'a')
  213. csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, 'all',
  214. sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean,
  215. dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean,
  216. dis_k_gi2sm_mean, dis_k_gi2gm_mean])
  217. f_summary.close()
  218. print('\ncomplete.')
  219. def xp_letter_h():
  220. ds = {'dataset': '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/data/collections/Letter.xml',
  221. 'graph_dir': '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/data/datasets/Letter/HIGH/'} # node/edge symb
  222. Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir'])
  223. for G in Gn:
  224. reform_attributes(G)
  225. # ds = {'name': 'Letter-high',
  226. # 'dataset': '../datasets/Letter-high/Letter-high_A.txt'} # node/edge symb
  227. # Gn, y_all = loadDataset(ds['dataset'])
  228. # Gn = Gn[0:50]
  229. gkernel = 'structuralspkernel'
  230. node_label = None
  231. edge_label = None
  232. ds_name = 'letter-h'
  233. dir_output = 'results/xp_letter_h/'
  234. save_results = False
  235. repeats = 1
  236. # k_list = range(2, 11)
  237. k_list = [150]
  238. fit_method = 'k-graphs'
  239. # get indices by classes.
  240. y_idx = get_same_item_indices(y_all)
  241. if save_results:
  242. # create result files.
  243. fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv'
  244. f_detail = open(dir_output + fn_output_detail, 'a')
  245. csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'fit method', 'k',
  246. 'target', 'repeat', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM',
  247. 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM',
  248. 'dis_k gi -> GM', 'median set'])
  249. f_detail.close()
  250. fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv'
  251. f_summary = open(dir_output + fn_output_summary, 'a')
  252. csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'fit method', 'k',
  253. 'target', 'SOD SM', 'SOD GM', 'dis_k SM', 'dis_k GM',
  254. 'min dis_k gi', 'SOD SM -> GM', 'dis_k SM -> GM', 'dis_k gi -> SM',
  255. 'dis_k gi -> GM', '# SOD SM -> GM', '# dis_k SM -> GM',
  256. '# dis_k gi -> SM', '# dis_k gi -> GM', 'repeats better SOD SM -> GM',
  257. 'repeats better dis_k SM -> GM', 'repeats better dis_k gi -> SM',
  258. 'repeats better dis_k gi -> GM'])
  259. f_summary.close()
  260. random.seed(1)
  261. rdn_seed_list = random.sample(range(0, repeats * 100), repeats)
  262. for k in k_list:
  263. print('\n--------- k =', k, '----------')
  264. sod_sm_mean_list = []
  265. sod_gm_mean_list = []
  266. dis_k_sm_mean_list = []
  267. dis_k_gm_mean_list = []
  268. dis_k_gi_min_mean_list = []
  269. # nb_sod_sm2gm = [0, 0, 0]
  270. # nb_dis_k_sm2gm = [0, 0, 0]
  271. # nb_dis_k_gi2sm = [0, 0, 0]
  272. # nb_dis_k_gi2gm = [0, 0, 0]
  273. # repeats_better_sod_sm2gm = []
  274. # repeats_better_dis_k_sm2gm = []
  275. # repeats_better_dis_k_gi2sm = []
  276. # repeats_better_dis_k_gi2gm = []
  277. for i, (y, values) in enumerate(y_idx.items()):
  278. print('\ny =', y)
  279. # y = 'N'
  280. # values = y_idx[y]
  281. # values = values[0:10]
  282. k = len(values)
  283. sod_sm_list = []
  284. sod_gm_list = []
  285. dis_k_sm_list = []
  286. dis_k_gm_list = []
  287. dis_k_gi_min_list = []
  288. nb_sod_sm2gm = [0, 0, 0]
  289. nb_dis_k_sm2gm = [0, 0, 0]
  290. nb_dis_k_gi2sm = [0, 0, 0]
  291. nb_dis_k_gi2gm = [0, 0, 0]
  292. repeats_better_sod_sm2gm = []
  293. repeats_better_dis_k_sm2gm = []
  294. repeats_better_dis_k_gi2sm = []
  295. repeats_better_dis_k_gi2gm = []
  296. for repeat in range(repeats):
  297. print('\nrepeat =', repeat)
  298. random.seed(rdn_seed_list[repeat])
  299. median_set_idx_idx = random.sample(range(0, len(values)), k)
  300. median_set_idx = [values[idx] for idx in median_set_idx_idx]
  301. print('median set: ', median_set_idx)
  302. Gn_median = [Gn[g] for g in values]
  303. sod_sm, sod_gm, dis_k_sm, dis_k_gm, dis_k_gi, dis_k_gi_min, idx_dis_k_gi_min \
  304. = median_on_k_closest_graphs(Gn_median, node_label, edge_label,
  305. gkernel, k, fit_method=fit_method, graph_dir=ds['graph_dir'],
  306. edit_costs=None, group_min=median_set_idx_idx,
  307. dataset='Letter', parallel=False)
  308. # write result detail.
  309. sod_sm2gm = getRelations(np.sign(sod_gm - sod_sm))
  310. dis_k_sm2gm = getRelations(np.sign(dis_k_gm - dis_k_sm))
  311. dis_k_gi2sm = getRelations(np.sign(dis_k_sm - dis_k_gi_min))
  312. dis_k_gi2gm = getRelations(np.sign(dis_k_gm - dis_k_gi_min))
  313. if save_results:
  314. f_detail = open(dir_output + fn_output_detail, 'a')
  315. csv.writer(f_detail).writerow([ds_name, gkernel, fit_method, k,
  316. y, repeat,
  317. sod_sm, sod_gm, dis_k_sm, dis_k_gm,
  318. dis_k_gi_min, sod_sm2gm, dis_k_sm2gm, dis_k_gi2sm,
  319. dis_k_gi2gm, median_set_idx])
  320. f_detail.close()
  321. # compute result summary.
  322. sod_sm_list.append(sod_sm)
  323. sod_gm_list.append(sod_gm)
  324. dis_k_sm_list.append(dis_k_sm)
  325. dis_k_gm_list.append(dis_k_gm)
  326. dis_k_gi_min_list.append(dis_k_gi_min)
  327. # # SOD SM -> GM
  328. if sod_sm > sod_gm:
  329. nb_sod_sm2gm[0] += 1
  330. repeats_better_sod_sm2gm.append(repeat)
  331. elif sod_sm == sod_gm:
  332. nb_sod_sm2gm[1] += 1
  333. elif sod_sm < sod_gm:
  334. nb_sod_sm2gm[2] += 1
  335. # # dis_k SM -> GM
  336. if dis_k_sm > dis_k_gm:
  337. nb_dis_k_sm2gm[0] += 1
  338. repeats_better_dis_k_sm2gm.append(repeat)
  339. elif dis_k_sm == dis_k_gm:
  340. nb_dis_k_sm2gm[1] += 1
  341. elif dis_k_sm < dis_k_gm:
  342. nb_dis_k_sm2gm[2] += 1
  343. # # dis_k gi -> SM
  344. if dis_k_gi_min > dis_k_sm:
  345. nb_dis_k_gi2sm[0] += 1
  346. repeats_better_dis_k_gi2sm.append(repeat)
  347. elif dis_k_gi_min == dis_k_sm:
  348. nb_dis_k_gi2sm[1] += 1
  349. elif dis_k_gi_min < dis_k_sm:
  350. nb_dis_k_gi2sm[2] += 1
  351. # # dis_k gi -> GM
  352. if dis_k_gi_min > dis_k_gm:
  353. nb_dis_k_gi2gm[0] += 1
  354. repeats_better_dis_k_gi2gm.append(repeat)
  355. elif dis_k_gi_min == dis_k_gm:
  356. nb_dis_k_gi2gm[1] += 1
  357. elif dis_k_gi_min < dis_k_gm:
  358. nb_dis_k_gi2gm[2] += 1
  359. # save median graphs.
  360. fname_sm = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/output/tmp_ged/set_median.gxl'
  361. fn_pre_sm_new = dir_output + 'medians/set_median.' + fit_method \
  362. + '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat)
  363. copyfile(fname_sm, fn_pre_sm_new + '.gxl')
  364. fname_gm = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/output/tmp_ged/gen_median.gxl'
  365. fn_pre_gm_new = dir_output + 'medians/gen_median.' + fit_method \
  366. + '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat)
  367. copyfile(fname_gm, fn_pre_gm_new + '.gxl')
  368. G_best_kernel = Gn_median[idx_dis_k_gi_min].copy()
  369. reform_attributes(G_best_kernel)
  370. fn_pre_g_best_kernel = dir_output + 'medians/g_best_kernel.' + fit_method \
  371. + '.k' + str(int(k)) + '.y' + y + '.repeat' + str(repeat)
  372. saveGXL(G_best_kernel, fn_pre_g_best_kernel + '.gxl', method='gedlib-letter')
  373. # plot median graphs.
  374. set_median = loadGXL(fn_pre_sm_new + '.gxl')
  375. gen_median = loadGXL(fn_pre_gm_new + '.gxl')
  376. draw_Letter_graph(set_median, fn_pre_sm_new)
  377. draw_Letter_graph(gen_median, fn_pre_gm_new)
  378. draw_Letter_graph(G_best_kernel, fn_pre_g_best_kernel)
  379. # write result summary for each letter.
  380. sod_sm_mean_list.append(np.mean(sod_sm_list))
  381. sod_gm_mean_list.append(np.mean(sod_gm_list))
  382. dis_k_sm_mean_list.append(np.mean(dis_k_sm_list))
  383. dis_k_gm_mean_list.append(np.mean(dis_k_gm_list))
  384. dis_k_gi_min_mean_list.append(np.mean(dis_k_gi_min_list))
  385. sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean_list[-1] - sod_sm_mean_list[-1]))
  386. dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_sm_mean_list[-1]))
  387. dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean_list[-1] - dis_k_gi_min_mean_list[-1]))
  388. dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean_list[-1] - dis_k_gi_min_mean_list[-1]))
  389. if save_results:
  390. f_summary = open(dir_output + fn_output_summary, 'a')
  391. csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, y,
  392. sod_sm_mean_list[-1], sod_gm_mean_list[-1],
  393. dis_k_sm_mean_list[-1], dis_k_gm_mean_list[-1],
  394. dis_k_gi_min_mean_list[-1], sod_sm2gm_mean, dis_k_sm2gm_mean,
  395. dis_k_gi2sm_mean, dis_k_gi2gm_mean, nb_sod_sm2gm,
  396. nb_dis_k_sm2gm, nb_dis_k_gi2sm, nb_dis_k_gi2gm,
  397. repeats_better_sod_sm2gm, repeats_better_dis_k_sm2gm,
  398. repeats_better_dis_k_gi2sm, repeats_better_dis_k_gi2gm])
  399. f_summary.close()
  400. # write result summary for each letter.
  401. sod_sm_mean = np.mean(sod_sm_mean_list)
  402. sod_gm_mean = np.mean(sod_gm_mean_list)
  403. dis_k_sm_mean = np.mean(dis_k_sm_mean_list)
  404. dis_k_gm_mean = np.mean(dis_k_gm_mean_list)
  405. dis_k_gi_min_mean = np.mean(dis_k_gi_min_list)
  406. sod_sm2gm_mean = getRelations(np.sign(sod_gm_mean - sod_sm_mean))
  407. dis_k_sm2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_sm_mean))
  408. dis_k_gi2sm_mean = getRelations(np.sign(dis_k_sm_mean - dis_k_gi_min_mean))
  409. dis_k_gi2gm_mean = getRelations(np.sign(dis_k_gm_mean - dis_k_gi_min_mean))
  410. if save_results:
  411. f_summary = open(dir_output + fn_output_summary, 'a')
  412. csv.writer(f_summary).writerow([ds_name, gkernel, fit_method, k, 'all',
  413. sod_sm_mean, sod_gm_mean, dis_k_sm_mean, dis_k_gm_mean,
  414. dis_k_gi_min_mean, sod_sm2gm_mean, dis_k_sm2gm_mean,
  415. dis_k_gi2sm_mean, dis_k_gi2gm_mean])
  416. f_summary.close()
  417. print('\ncomplete.')
  418. #Dessin median courrant
  419. def draw_Letter_graph(graph, file_prefix):
  420. plt.figure()
  421. pos = {}
  422. for n in graph.nodes:
  423. pos[n] = np.array([float(graph.node[n]['x']),float(graph.node[n]['y'])])
  424. nx.draw_networkx(graph, pos)
  425. plt.savefig(file_prefix + '.eps', format='eps', dpi=300)
  426. # plt.show()
  427. plt.clf()
  428. if __name__ == "__main__":
  429. # xp_letter_h()
  430. xp_letter_h_LETTER2_cost()

A Python package for graph kernels, graph edit distances and graph pre-image problem.