You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

random_preimage_generator.py 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Fri May 29 14:29:52 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. import time
  9. import sys
  10. from tqdm import tqdm
  11. import multiprocessing
  12. import networkx as nx
  13. from multiprocessing import Pool
  14. from functools import partial
  15. from gklearn.preimage import PreimageGenerator
  16. from gklearn.preimage.utils import compute_k_dis
  17. from gklearn.utils import Timer
  18. from gklearn.utils.utils import get_graph_kernel_by_name
  19. # from gklearn.utils.dataset import Dataset
  20. class RandomPreimageGenerator(PreimageGenerator):
  21. def __init__(self, dataset=None):
  22. PreimageGenerator.__init__(self, dataset=dataset)
  23. # arguments to set.
  24. self.__k = 5 # number of nearest neighbors of phi in D_N.
  25. self.__r_max = 10 # maximum number of iterations.
  26. self.__l = 500 # numbers of graphs generated for each graph in D_k U {g_i_hat}.
  27. self.__alphas = None # weights of linear combinations of points in kernel space.
  28. self.__parallel = True
  29. self.__n_jobs = multiprocessing.cpu_count()
  30. self.__time_limit_in_sec = 0 # @todo
  31. self.__max_itrs = 100 # @todo
  32. # values to compute.
  33. self.__runtime_generate_preimage = None
  34. self.__runtime_total = None
  35. self.__preimage = None
  36. self.__best_from_dataset = None
  37. self.__k_dis_preimage = None
  38. self.__k_dis_dataset = None
  39. self.__itrs = 0
  40. self.__converged = False # @todo
  41. self.__num_updates = 0
  42. # values that can be set or to be computed.
  43. self.__gram_matrix_unnorm = None
  44. self.__runtime_precompute_gm = None
  45. def set_options(self, **kwargs):
  46. self._kernel_options = kwargs.get('kernel_options', {})
  47. self._graph_kernel = kwargs.get('graph_kernel', None)
  48. self._verbose = kwargs.get('verbose', 2)
  49. self.__k = kwargs.get('k', 5)
  50. self.__r_max = kwargs.get('r_max', 10)
  51. self.__l = kwargs.get('l', 500)
  52. self.__alphas = kwargs.get('alphas', None)
  53. self.__parallel = kwargs.get('parallel', True)
  54. self.__n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count())
  55. self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0)
  56. self.__max_itrs = kwargs.get('max_itrs', 100)
  57. self.__gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None)
  58. self.__runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None)
  59. def run(self):
  60. self._graph_kernel = get_graph_kernel_by_name(self._kernel_options['name'],
  61. node_labels=self._dataset.node_labels,
  62. edge_labels=self._dataset.edge_labels,
  63. node_attrs=self._dataset.node_attrs,
  64. edge_attrs=self._dataset.edge_attrs,
  65. ds_infos=self._dataset.get_dataset_infos(keys=['directed']),
  66. kernel_options=self._kernel_options)
  67. # record start time.
  68. start = time.time()
  69. # 1. precompute gram matrix.
  70. if self.__gram_matrix_unnorm is None:
  71. gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options)
  72. self.__gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm
  73. end_precompute_gm = time.time()
  74. self.__runtime_precompute_gm = end_precompute_gm - start
  75. else:
  76. if self.__runtime_precompute_gm is None:
  77. raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.')
  78. self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm
  79. if self._kernel_options['normalize']:
  80. self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm))
  81. else:
  82. self._graph_kernel.gram_matrix = np.copy(self.__gram_matrix_unnorm)
  83. end_precompute_gm = time.time()
  84. start -= self.__runtime_precompute_gm
  85. # 2. compute k nearest neighbors of phi in D_N.
  86. if self._verbose >= 2:
  87. print('\nstart computing k nearest neighbors of phi in D_N...\n')
  88. D_N = self._dataset.graphs
  89. if self.__alphas is None:
  90. self.__alphas = [1 / len(D_N)] * len(D_N)
  91. k_dis_list = [] # distance between g_star and each graph.
  92. term3 = 0
  93. for i1, a1 in enumerate(self.__alphas):
  94. for i2, a2 in enumerate(self.__alphas):
  95. term3 += a1 * a2 * self._graph_kernel.gram_matrix[i1, i2]
  96. for idx in range(len(D_N)):
  97. k_dis_list.append(compute_k_dis(idx, range(0, len(D_N)), self.__alphas, self._graph_kernel.gram_matrix, term3=term3, withterm3=True))
  98. # sort.
  99. sort_idx = np.argsort(k_dis_list)
  100. dis_gs = [k_dis_list[idis] for idis in sort_idx[0:self.__k]] # the k shortest distances.
  101. nb_best = len(np.argwhere(dis_gs == dis_gs[0]).flatten().tolist())
  102. g0hat_list = [D_N[idx].copy() for idx in sort_idx[0:nb_best]] # the nearest neighbors of phi in D_N
  103. self.__best_from_dataset = g0hat_list[0] # get the first best graph if there are muitlple.
  104. self.__k_dis_dataset = dis_gs[0]
  105. if self.__k_dis_dataset == 0: # get the exact pre-image.
  106. end_generate_preimage = time.time()
  107. self.__runtime_generate_preimage = end_generate_preimage - end_precompute_gm
  108. self.__runtime_total = end_generate_preimage - start
  109. self.__preimage = self.__best_from_dataset.copy()
  110. self.__k_dis_preimage = self.__k_dis_dataset
  111. if self._verbose:
  112. print()
  113. print('=============================================================================')
  114. print('The exact pre-image is found from the input dataset.')
  115. print('-----------------------------------------------------------------------------')
  116. print('Distance in kernel space for the best graph from dataset and for preimage:', self.__k_dis_dataset)
  117. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  118. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  119. print('Total time:', self.__runtime_total)
  120. print('=============================================================================')
  121. print()
  122. return
  123. dhat = dis_gs[0] # the nearest distance
  124. Gk = [D_N[ig].copy() for ig in sort_idx[0:self.__k]] # the k nearest neighbors
  125. Gs_nearest = [nx.convert_node_labels_to_integers(g) for g in Gk] # [g.copy() for g in Gk]
  126. # 3. start iterations.
  127. if self._verbose >= 2:
  128. print('starting iterations...')
  129. gihat_list = []
  130. dihat_list = []
  131. r = 0
  132. dis_of_each_itr = [dhat]
  133. if self.__parallel:
  134. self._kernel_options['parallel'] = None
  135. while r < self.__r_max:
  136. print('\n- r =', r)
  137. found = False
  138. dis_bests = dis_gs + dihat_list
  139. # compute numbers of edges to be inserted/deleted.
  140. # @todo what if the log is negetive? how to choose alpha (scalar)?
  141. fdgs_list = np.array(dis_bests)
  142. if np.min(fdgs_list) < 1:
  143. fdgs_list /= np.min(fdgs_list)
  144. fdgs_list = [int(item) for item in np.ceil(np.log(fdgs_list))]
  145. if np.min(fdgs_list) < 1:
  146. fdgs_list = np.array(fdgs_list) + 1
  147. for ig, gs in enumerate(Gs_nearest + gihat_list):
  148. if self._verbose >= 2:
  149. print('-- computing', ig + 1, 'graphs out of', len(Gs_nearest) + len(gihat_list))
  150. gnew, dhat, found = self.__generate_l_graphs(gs, fdgs_list[ig], dhat, ig, found, term3)
  151. if found:
  152. r = 0
  153. gihat_list = [gnew]
  154. dihat_list = [dhat]
  155. else:
  156. r += 1
  157. dis_of_each_itr.append(dhat)
  158. self.__itrs += 1
  159. if self._verbose >= 2:
  160. print('Total number of iterations is', self.__itrs, '.')
  161. print('The preimage is updated', self.__num_updates, 'times.')
  162. print('The shortest distances for previous iterations are', dis_of_each_itr, '.')
  163. # get results and print.
  164. end_generate_preimage = time.time()
  165. self.__runtime_generate_preimage = end_generate_preimage - end_precompute_gm
  166. self.__runtime_total = end_generate_preimage - start
  167. self.__preimage = (g0hat_list[0] if len(gihat_list) == 0 else gihat_list[0])
  168. self.__k_dis_preimage = dhat
  169. if self._verbose:
  170. print()
  171. print('=============================================================================')
  172. print('Finished generalization of preimages.')
  173. print('-----------------------------------------------------------------------------')
  174. print('Distance in kernel space for the best graph from dataset:', self.__k_dis_dataset)
  175. print('Distance in kernel space for the preimage:', self.__k_dis_preimage)
  176. print('Total number of iterations for optimizing:', self.__itrs)
  177. print('Total number of updating preimage:', self.__num_updates)
  178. print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm)
  179. print('Time to generate pre-images:', self.__runtime_generate_preimage)
  180. print('Total time:', self.__runtime_total)
  181. print('=============================================================================')
  182. print()
  183. def __generate_l_graphs(self, g_init, fdgs, dhat, ig, found, term3):
  184. if self.__parallel:
  185. gnew, dhat, found = self.__generate_l_graphs_parallel(g_init, fdgs, dhat, ig, found, term3)
  186. else:
  187. gnew, dhat, found = self.__generate_l_graphs_series(g_init, fdgs, dhat, ig, found, term3)
  188. return gnew, dhat, found
  189. def __generate_l_graphs_series(self, g_init, fdgs, dhat, ig, found, term3):
  190. gnew = None
  191. updated = False
  192. for trial in range(0, self.__l):
  193. if self._verbose >= 2:
  194. print('---', trial + 1, 'trial out of', self.__l)
  195. gtemp, dnew = self.__do_trial(g_init, fdgs, term3, trial)
  196. # get the better graph preimage.
  197. if dnew <= dhat: # @todo: the new distance is smaller or also equal?
  198. if dnew < dhat:
  199. if self._verbose >= 2:
  200. print('trial =', str(trial))
  201. print('\nI am smaller!')
  202. print('index (as in D_k U {gihat} =', str(ig))
  203. print('distance:', dhat, '->', dnew)
  204. updated = True
  205. elif dnew == dhat:
  206. if self._verbose >= 2:
  207. print('I am equal!')
  208. dhat = dnew
  209. gnew = gtemp.copy()
  210. found = True # found better or equally good graph.
  211. if updated:
  212. self.__num_updates += 1
  213. return gnew, dhat, found
  214. def __generate_l_graphs_parallel(self, g_init, fdgs, dhat, ig, found, term3):
  215. gnew = None
  216. len_itr = self.__l
  217. gnew_list = [None] * len_itr
  218. dnew_list = [None] * len_itr
  219. itr = range(0, len_itr)
  220. n_jobs = multiprocessing.cpu_count()
  221. if len_itr < 100 * n_jobs:
  222. chunksize = int(len_itr / n_jobs) + 1
  223. else:
  224. chunksize = 100
  225. do_fun = partial(self._generate_graph_parallel, g_init, fdgs, term3)
  226. pool = Pool(processes=n_jobs)
  227. if self._verbose >= 2:
  228. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  229. desc='Generating l graphs', file=sys.stdout)
  230. else:
  231. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  232. for idx, gnew, dnew in iterator:
  233. gnew_list[idx] = gnew
  234. dnew_list[idx] = dnew
  235. pool.close()
  236. pool.join()
  237. # check if get the better graph preimage.
  238. idx_min = np.argmin(dnew_list)
  239. dnew = dnew_list[idx_min]
  240. if dnew <= dhat: # @todo: the new distance is smaller or also equal?
  241. if dnew < dhat:
  242. if self._verbose >= 2:
  243. print('\nI am smaller!')
  244. print('index (as in D_k U {gihat} =', str(ig))
  245. print('distance:', dhat, '->', dnew)
  246. self.__num_updates += 1
  247. elif dnew == dhat:
  248. if self._verbose >= 2:
  249. print('I am equal!')
  250. dhat = dnew
  251. gnew = gnew_list[idx_min]
  252. found = True # found better graph.
  253. return gnew, dhat, found
  254. def _generate_graph_parallel(self, g_init, fdgs, term3, itr):
  255. trial = itr
  256. gtemp, dnew = self.__do_trial(g_init, fdgs, term3, trial)
  257. return trial, gtemp, dnew
  258. def __do_trial(self, g_init, fdgs, term3, trial):
  259. # add and delete edges.
  260. gtemp = g_init.copy()
  261. seed = (trial + int(time.time())) % (2 ** 32 - 1)
  262. rdm_state = np.random.RandomState(seed=seed)
  263. # which edges to change.
  264. # @todo: should we use just half of the adjacency matrix for undirected graphs?
  265. nb_vpairs = nx.number_of_nodes(g_init) * (nx.number_of_nodes(g_init) - 1)
  266. # @todo: what if fdgs is bigger than nb_vpairs?
  267. idx_change = rdm_state.randint(0, high=nb_vpairs, size=(fdgs if
  268. fdgs < nb_vpairs else nb_vpairs))
  269. for item in idx_change:
  270. node1 = int(item / (nx.number_of_nodes(g_init) - 1))
  271. node2 = (item - node1 * (nx.number_of_nodes(g_init) - 1))
  272. if node2 >= node1: # skip the self pair.
  273. node2 += 1
  274. # @todo: is the randomness correct?
  275. if not gtemp.has_edge(node1, node2):
  276. gtemp.add_edge(node1, node2)
  277. else:
  278. gtemp.remove_edge(node1, node2)
  279. # compute new distances.
  280. kernels_to_gtmp, _ = self._graph_kernel.compute(gtemp, self._dataset.graphs, **self._kernel_options)
  281. kernel_gtmp, _ = self._graph_kernel.compute(gtemp, gtemp, **self._kernel_options)
  282. kernels_to_gtmp = [kernels_to_gtmp[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gtmp) for i in range(len(kernels_to_gtmp))] # normalize
  283. # @todo: not correct kernel value
  284. gram_with_gtmp = np.concatenate((np.array([kernels_to_gtmp]), np.copy(self._graph_kernel.gram_matrix)), axis=0)
  285. gram_with_gtmp = np.concatenate((np.array([[1] + kernels_to_gtmp]).T, gram_with_gtmp), axis=1)
  286. dnew = compute_k_dis(0, range(1, 1 + len(self._dataset.graphs)), self.__alphas, gram_with_gtmp, term3=term3, withterm3=True)
  287. return gtemp, dnew
  288. def get_results(self):
  289. results = {}
  290. results['runtime_precompute_gm'] = self.__runtime_precompute_gm
  291. results['runtime_generate_preimage'] = self.__runtime_generate_preimage
  292. results['runtime_total'] = self.__runtime_total
  293. results['k_dis_dataset'] = self.__k_dis_dataset
  294. results['k_dis_preimage'] = self.__k_dis_preimage
  295. results['itrs'] = self.__itrs
  296. results['num_updates'] = self.__num_updates
  297. return results
  298. def __termination_criterion_met(self, converged, timer, itr, itrs_without_update):
  299. if timer.expired() or (itr >= self.__max_itrs if self.__max_itrs >= 0 else False):
  300. # if self.__state == AlgorithmState.TERMINATED:
  301. # self.__state = AlgorithmState.INITIALIZED
  302. return True
  303. return converged or (itrs_without_update > self.__max_itrs_without_update if self.__max_itrs_without_update >= 0 else False)
  304. @property
  305. def preimage(self):
  306. return self.__preimage
  307. @property
  308. def best_from_dataset(self):
  309. return self.__best_from_dataset
  310. @property
  311. def gram_matrix_unnorm(self):
  312. return self.__gram_matrix_unnorm
  313. @gram_matrix_unnorm.setter
  314. def gram_matrix_unnorm(self, value):
  315. self.__gram_matrix_unnorm = value

A Python package for graph kernels, graph edit distances and graph pre-image problem.