You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

graph_files.py 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. def load_dataset(filename, filename_targets=None, gformat=None, **kwargs):
  5. """Read graph data from filename and load them as NetworkX graphs.
  6. Parameters
  7. ----------
  8. filename : string
  9. The name of the file from where the dataset is read.
  10. filename_y : string
  11. The name of file of the targets corresponding to graphs.
  12. extra_params : dict
  13. Extra parameters only designated to '.mat' format.
  14. Return
  15. ------
  16. data : List of NetworkX graph.
  17. y : List
  18. Targets corresponding to graphs.
  19. Notes
  20. -----
  21. This function supports following graph dataset formats:
  22. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  23. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  24. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  25. 'sdf': load data from structured data file (.sdf file). See
  26. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  27. for details.
  28. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  29. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  30. for details.
  31. 'txt': Load graph data from a special .txt file. See
  32. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  33. for details. Note here filename is the name of either .txt file in
  34. the dataset directory.
  35. """
  36. extension = splitext(filename)[1][1:]
  37. if extension == "ds":
  38. data, y, label_names = load_from_ds(filename, filename_targets)
  39. elif extension == "cxl":
  40. import xml.etree.ElementTree as ET
  41. dirname_dataset = dirname(filename)
  42. tree = ET.parse(filename)
  43. root = tree.getroot()
  44. data = []
  45. y = []
  46. for graph in root.iter('graph'):
  47. mol_filename = graph.attrib['file']
  48. mol_class = graph.attrib['class']
  49. data.append(load_gxl(dirname_dataset + '/' + mol_filename))
  50. y.append(mol_class)
  51. elif extension == 'xml':
  52. dir_dataset = kwargs.get('dirname_dataset', None)
  53. data, y = loadFromXML(filename, dir_dataset)
  54. elif extension == "sdf":
  55. # import numpy as np
  56. from tqdm import tqdm
  57. import sys
  58. data = loadSDF(filename)
  59. y_raw = open(filename_targets).read().splitlines()
  60. y_raw.pop(0)
  61. tmp0 = []
  62. tmp1 = []
  63. for i in range(0, len(y_raw)):
  64. tmp = y_raw[i].split(',')
  65. tmp0.append(tmp[0])
  66. tmp1.append(tmp[1].strip())
  67. y = []
  68. for i in tqdm(range(0, len(data)), desc='ajust data', file=sys.stdout):
  69. try:
  70. y.append(tmp1[tmp0.index(data[i].name)].strip())
  71. except ValueError: # if data[i].name not in tmp0
  72. data[i] = []
  73. data = list(filter(lambda a: a != [], data))
  74. elif extension == "mat":
  75. order = kwargs.get('order')
  76. data, y = loadMAT(filename, order)
  77. elif extension == 'txt':
  78. data, y, label_names = load_tud(filename)
  79. return data, y, label_names
  80. def save_dataset(Gn, y, gformat='gxl', group=None, filename='gfile', xparams=None):
  81. """Save list of graphs.
  82. """
  83. import os
  84. dirname_ds = os.path.dirname(filename)
  85. if dirname_ds != '':
  86. dirname_ds += '/'
  87. if not os.path.exists(dirname_ds) :
  88. os.makedirs(dirname_ds)
  89. if xparams is not None and 'graph_dir' in xparams:
  90. graph_dir = xparams['graph_dir'] + '/'
  91. if not os.path.exists(graph_dir):
  92. os.makedirs(graph_dir)
  93. else:
  94. graph_dir = dirname_ds
  95. if group == 'xml' and gformat == 'gxl':
  96. kwargs = {'method': xparams['method']} if xparams is not None else {}
  97. with open(filename + '.xml', 'w') as fgroup:
  98. fgroup.write("<?xml version=\"1.0\"?>")
  99. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  100. fgroup.write("\n<GraphCollection>")
  101. for idx, g in enumerate(Gn):
  102. fname_tmp = "graph" + str(idx) + ".gxl"
  103. saveGXL(g, graph_dir + fname_tmp, **kwargs)
  104. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(y[idx]) + "\"/>")
  105. fgroup.write("\n</GraphCollection>")
  106. fgroup.close()
  107. def load_ct(filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
  108. """load data from a Chemical Table (.ct) file.
  109. Notes
  110. ------
  111. a typical example of data in .ct is like this:
  112. 3 2 <- number of nodes and edges
  113. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  114. 0.0000 0.0000 0.0000 C
  115. 0.0000 0.0000 0.0000 O
  116. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  117. 2 3 1 1
  118. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  119. for detailed format discription.
  120. """
  121. import networkx as nx
  122. from os.path import basename
  123. g = nx.Graph()
  124. with open(filename) as f:
  125. content = f.read().splitlines()
  126. g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
  127. # read the counts line.
  128. tmp = content[1].split(' ')
  129. tmp = [x for x in tmp if x != '']
  130. nb_atoms = int(tmp[0].strip()) # number of atoms
  131. nb_bonds = int(tmp[1].strip()) # number of bonds
  132. count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
  133. i = 0
  134. while i < len(tmp):
  135. if count_line_tags[i] != '': # if not obsoleted
  136. g.graph[count_line_tags[i]] = tmp[i].strip()
  137. i += 1
  138. # read the atom block.
  139. atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
  140. for i in range(0, nb_atoms):
  141. tmp = content[i + 2].split(' ')
  142. tmp = [x for x in tmp if x != '']
  143. g.add_node(i)
  144. j = 0
  145. while j < len(tmp):
  146. if atom_tags[j] != '':
  147. g.nodes[i][atom_tags[j]] = tmp[j].strip()
  148. j += 1
  149. # read the bond block.
  150. bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
  151. for i in range(0, nb_bonds):
  152. tmp = content[i + g.number_of_nodes() + 2].split(' ')
  153. tmp = [x for x in tmp if x != '']
  154. n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
  155. g.add_edge(n1, n2)
  156. j = 2
  157. while j < len(tmp):
  158. if bond_tags[j] != '':
  159. g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
  160. j += 1
  161. # get label names.
  162. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  163. atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
  164. for nd in g.nodes():
  165. for key in g.nodes[nd]:
  166. if atom_symbolic[atom_tags.index(key)] == 1:
  167. label_names['node_labels'].append(key)
  168. else:
  169. label_names['node_attrs'].append(key)
  170. break
  171. bond_symbolic = [None, None, 1, 1, None, 1, 1]
  172. for ed in g.edges():
  173. for key in g.edges[ed]:
  174. if bond_symbolic[bond_tags.index(key)] == 1:
  175. label_names['edge_labels'].append(key)
  176. else:
  177. label_names['edge_attrs'].append(key)
  178. break
  179. return g, label_names
  180. def load_gxl(filename): # @todo: directed graphs.
  181. from os.path import basename
  182. import networkx as nx
  183. import xml.etree.ElementTree as ET
  184. tree = ET.parse(filename)
  185. root = tree.getroot()
  186. index = 0
  187. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  188. dic = {} # used to retrieve incident nodes of edges
  189. for node in root.iter('node'):
  190. dic[node.attrib['id']] = index
  191. labels = {}
  192. for attr in node.iter('attr'):
  193. labels[attr.attrib['name']] = attr[0].text
  194. g.add_node(index, **labels)
  195. index += 1
  196. for edge in root.iter('edge'):
  197. labels = {}
  198. for attr in edge.iter('attr'):
  199. labels[attr.attrib['name']] = attr[0].text
  200. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  201. # get label names.
  202. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  203. for node in root.iter('node'):
  204. for attr in node.iter('attr'):
  205. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  206. label_names['node_labels'].append(attr.attrib['name'])
  207. else:
  208. label_names['node_attrs'].append(attr.attrib['name'])
  209. break
  210. for edge in root.iter('edge'):
  211. for attr in edge.iter('attr'):
  212. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  213. label_names['edge_labels'].append(attr.attrib['name'])
  214. else:
  215. label_names['edge_attrs'].append(attr.attrib['name'])
  216. break
  217. return g, label_names
  218. def saveGXL(graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  219. if method == 'default':
  220. gxl_file = open(filename, 'w')
  221. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  222. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  223. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  224. if 'name' in graph.graph:
  225. name = str(graph.graph['name'])
  226. else:
  227. name = 'dummy'
  228. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  229. for v, attrs in graph.nodes(data=True):
  230. gxl_file.write("<node id=\"_" + str(v) + "\">")
  231. for l_name in node_labels:
  232. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  233. str(attrs[l_name]) + "</int></attr>")
  234. for a_name in node_attrs:
  235. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  236. str(attrs[a_name]) + "</float></attr>")
  237. gxl_file.write("</node>\n")
  238. for v1, v2, attrs in graph.edges(data=True):
  239. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  240. for l_name in edge_labels:
  241. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  242. str(attrs[l_name]) + "</int></attr>")
  243. for a_name in edge_attrs:
  244. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  245. str(attrs[a_name]) + "</float></attr>")
  246. gxl_file.write("</edge>\n")
  247. gxl_file.write("</graph>\n")
  248. gxl_file.write("</gxl>")
  249. gxl_file.close()
  250. elif method == 'benoit':
  251. import xml.etree.ElementTree as ET
  252. root_node = ET.Element('gxl')
  253. attr = dict()
  254. attr['id'] = str(graph.graph['name'])
  255. attr['edgeids'] = 'true'
  256. attr['edgemode'] = 'undirected'
  257. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  258. for v in graph:
  259. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  260. for attr in graph.nodes[v].keys():
  261. cur_attr = ET.SubElement(
  262. current_node, 'attr', attrib={'name': attr})
  263. cur_value = ET.SubElement(cur_attr,
  264. graph.nodes[v][attr].__class__.__name__)
  265. cur_value.text = graph.nodes[v][attr]
  266. for v1 in graph:
  267. for v2 in graph[v1]:
  268. if (v1 < v2): # Non oriented graphs
  269. cur_edge = ET.SubElement(
  270. graph_node,
  271. 'edge',
  272. attrib={
  273. 'from': str(v1),
  274. 'to': str(v2)
  275. })
  276. for attr in graph[v1][v2].keys():
  277. cur_attr = ET.SubElement(
  278. cur_edge, 'attr', attrib={'name': attr})
  279. cur_value = ET.SubElement(
  280. cur_attr, graph[v1][v2][attr].__class__.__name__)
  281. cur_value.text = str(graph[v1][v2][attr])
  282. tree = ET.ElementTree(root_node)
  283. tree.write(filename)
  284. elif method == 'gedlib':
  285. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  286. # pass
  287. gxl_file = open(filename, 'w')
  288. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  289. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  290. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  291. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  292. for v, attrs in graph.nodes(data=True):
  293. gxl_file.write("<node id=\"_" + str(v) + "\">")
  294. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  295. gxl_file.write("</node>\n")
  296. for v1, v2, attrs in graph.edges(data=True):
  297. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  298. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  299. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  300. gxl_file.write("</edge>\n")
  301. gxl_file.write("</graph>\n")
  302. gxl_file.write("</gxl>")
  303. gxl_file.close()
  304. elif method == 'gedlib-letter':
  305. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  306. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  307. gxl_file = open(filename, 'w')
  308. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  309. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  310. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  311. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  312. for v, attrs in graph.nodes(data=True):
  313. gxl_file.write("<node id=\"_" + str(v) + "\">")
  314. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  315. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  316. gxl_file.write("</node>\n")
  317. for v1, v2, attrs in graph.edges(data=True):
  318. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  319. gxl_file.write("</graph>\n")
  320. gxl_file.write("</gxl>")
  321. gxl_file.close()
  322. def loadSDF(filename):
  323. """load data from structured data file (.sdf file).
  324. Notes
  325. ------
  326. A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  327. Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  328. """
  329. import networkx as nx
  330. from os.path import basename
  331. from tqdm import tqdm
  332. import sys
  333. data = []
  334. with open(filename) as f:
  335. content = f.read().splitlines()
  336. index = 0
  337. pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  338. while index < len(content):
  339. index_old = index
  340. g = nx.Graph(name=content[index].strip()) # set name of the graph
  341. tmp = content[index + 3]
  342. nb_nodes = int(tmp[:3]) # number of the nodes
  343. nb_edges = int(tmp[3:6]) # number of the edges
  344. for i in range(0, nb_nodes):
  345. tmp = content[i + index + 4]
  346. g.add_node(i, atom=tmp[31:34].strip())
  347. for i in range(0, nb_edges):
  348. tmp = content[i + index + g.number_of_nodes() + 4]
  349. tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  350. g.add_edge(
  351. int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  352. data.append(g)
  353. index += 4 + g.number_of_nodes() + g.number_of_edges()
  354. while content[index].strip() != '$$$$': # seperator
  355. index += 1
  356. index += 1
  357. pbar.update(index - index_old)
  358. pbar.update(1)
  359. pbar.close()
  360. return data
  361. def loadMAT(filename, order):
  362. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  363. Notes
  364. ------
  365. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  366. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  367. """
  368. from scipy.io import loadmat
  369. import numpy as np
  370. import networkx as nx
  371. data = []
  372. content = loadmat(filename)
  373. # print(content)
  374. # print('----')
  375. for key, value in content.items():
  376. if key[0] == 'l': # class label
  377. y = np.transpose(value)[0].tolist()
  378. # print(y)
  379. elif key[0] != '_':
  380. # print(value[0][0][0])
  381. # print()
  382. # print(value[0][0][1])
  383. # print()
  384. # print(value[0][0][2])
  385. # print()
  386. # if len(value[0][0]) > 3:
  387. # print(value[0][0][3])
  388. # print('----')
  389. # if adjacency matrix is not compressed / edge label exists
  390. if order[1] == 0:
  391. for i, item in enumerate(value[0]):
  392. # print(item)
  393. # print('------')
  394. g = nx.Graph(name=i) # set name of the graph
  395. nl = np.transpose(item[order[3]][0][0][0]) # node label
  396. # print(item[order[3]])
  397. # print()
  398. for index, label in enumerate(nl[0]):
  399. g.add_node(index, atom=str(label))
  400. el = item[order[4]][0][0][0] # edge label
  401. for edge in el:
  402. g.add_edge(
  403. edge[0] - 1, edge[1] - 1, bond_type=str(edge[2]))
  404. data.append(g)
  405. else:
  406. from scipy.sparse import csc_matrix
  407. for i, item in enumerate(value[0]):
  408. # print(item)
  409. # print('------')
  410. g = nx.Graph(name=i) # set name of the graph
  411. nl = np.transpose(item[order[3]][0][0][0]) # node label
  412. # print(nl)
  413. # print()
  414. for index, label in enumerate(nl[0]):
  415. g.add_node(index, atom=str(label))
  416. sam = item[order[0]] # sparse adjacency matrix
  417. index_no0 = sam.nonzero()
  418. for col, row in zip(index_no0[0], index_no0[1]):
  419. # print(col)
  420. # print(row)
  421. g.add_edge(col, row)
  422. data.append(g)
  423. # print(g.edges(data=True))
  424. return data, y
  425. def load_tud(filename):
  426. """Load graph data from TUD dataset files.
  427. Notes
  428. ------
  429. The graph data is loaded from separate files.
  430. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  431. """
  432. import networkx as nx
  433. from os import listdir
  434. from os.path import dirname, basename
  435. def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
  436. """Get information from DS_label_readme.txt file.
  437. """
  438. def get_label_names_from_line(line):
  439. """Get names of labels/attributes from a line.
  440. """
  441. str_names = line.split('[')[1].split(']')[0]
  442. names = str_names.split(',')
  443. names = [attr.strip() for attr in names]
  444. return names
  445. def get_class_label_map(label_map_strings):
  446. label_map = {}
  447. for string in label_map_strings:
  448. integer, label = string.split('\t')
  449. label_map[int(integer.strip())] = label.strip()
  450. return label_map
  451. label_names = {'node_labels': [], 'node_attrs': [],
  452. 'edge_labels': [], 'edge_attrs': []}
  453. class_label_map = None
  454. class_label_map_strings = []
  455. content_rm = open(frm).read().splitlines()
  456. i = 0
  457. while i < len(content_rm):
  458. line = content_rm[i].strip()
  459. # get node/edge labels and attributes.
  460. if line.startswith('Node labels:'):
  461. label_names['node_labels'] = get_label_names_from_line(line)
  462. elif line.startswith('Node attributes:'):
  463. label_names['node_attrs'] = get_label_names_from_line(line)
  464. elif line.startswith('Edge labels:'):
  465. label_names['edge_labels'] = get_label_names_from_line(line)
  466. elif line.startswith('Edge attributes:'):
  467. label_names['edge_attrs'] = get_label_names_from_line(line)
  468. # get class label map.
  469. elif line.startswith('Class labels were converted to integer values using this map:'):
  470. i += 2
  471. line = content_rm[i].strip()
  472. while line != '' and i < len(content_rm):
  473. class_label_map_strings.append(line)
  474. i += 1
  475. line = content_rm[i].strip()
  476. class_label_map = get_class_label_map(class_label_map_strings)
  477. i += 1
  478. return label_names, class_label_map
  479. # get dataset name.
  480. dirname_dataset = dirname(filename)
  481. filename = basename(filename)
  482. fn_split = filename.split('_A')
  483. ds_name = fn_split[0].strip()
  484. # load data file names
  485. for name in listdir(dirname_dataset):
  486. if ds_name + '_A' in name:
  487. fam = dirname_dataset + '/' + name
  488. elif ds_name + '_graph_indicator' in name:
  489. fgi = dirname_dataset + '/' + name
  490. elif ds_name + '_graph_labels' in name:
  491. fgl = dirname_dataset + '/' + name
  492. elif ds_name + '_node_labels' in name:
  493. fnl = dirname_dataset + '/' + name
  494. elif ds_name + '_edge_labels' in name:
  495. fel = dirname_dataset + '/' + name
  496. elif ds_name + '_edge_attributes' in name:
  497. fea = dirname_dataset + '/' + name
  498. elif ds_name + '_node_attributes' in name:
  499. fna = dirname_dataset + '/' + name
  500. elif ds_name + '_graph_attributes' in name:
  501. fga = dirname_dataset + '/' + name
  502. elif ds_name + '_label_readme' in name:
  503. frm = dirname_dataset + '/' + name
  504. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  505. elif ds_name + '_attributes' in name:
  506. fna = dirname_dataset + '/' + name
  507. # get labels and attributes names.
  508. if 'frm' in locals():
  509. label_names, class_label_map = get_infos_from_readme(frm)
  510. else:
  511. label_names = {'node_labels': [], 'node_attrs': [],
  512. 'edge_labels': [], 'edge_attrs': []}
  513. class_label_map = None
  514. content_gi = open(fgi).read().splitlines() # graph indicator
  515. content_am = open(fam).read().splitlines() # adjacency matrix
  516. # load targets.
  517. if 'fgl' in locals():
  518. content_targets = open(fgl).read().splitlines() # targets (classification)
  519. targets = [float(i) for i in content_targets]
  520. elif 'fga' in locals():
  521. content_targets = open(fga).read().splitlines() # targets (regression)
  522. targets = [int(i) for i in content_targets]
  523. if class_label_map is not None:
  524. targets = [class_label_map[t] for t in targets]
  525. else:
  526. raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
  527. # create graphs and add nodes
  528. data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
  529. if 'fnl' in locals():
  530. content_nl = open(fnl).read().splitlines() # node labels
  531. for idx, line in enumerate(content_gi):
  532. # transfer to int first in case of unexpected blanks
  533. data[int(line) - 1].add_node(idx)
  534. labels = [l.strip() for l in content_nl[idx].split(',')]
  535. if label_names['node_labels'] == []: # @todo: need fix bug.
  536. for i, label in enumerate(labels):
  537. l_name = 'label_' + str(i)
  538. data[int(line) - 1].nodes[idx][l_name] = label
  539. label_names['node_labels'].append(l_name)
  540. else:
  541. for i, l_name in enumerate(label_names['node_labels']):
  542. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  543. else:
  544. for i, line in enumerate(content_gi):
  545. data[int(line) - 1].add_node(i)
  546. # add edges
  547. for line in content_am:
  548. tmp = line.split(',')
  549. n1 = int(tmp[0]) - 1
  550. n2 = int(tmp[1]) - 1
  551. # ignore edge weight here.
  552. g = int(content_gi[n1]) - 1
  553. data[g].add_edge(n1, n2)
  554. # add edge labels
  555. if 'fel' in locals():
  556. content_el = open(fel).read().splitlines()
  557. for idx, line in enumerate(content_el):
  558. labels = [l.strip() for l in line.split(',')]
  559. n = [int(i) - 1 for i in content_am[idx].split(',')]
  560. g = int(content_gi[n[0]]) - 1
  561. if label_names['edge_labels'] == []:
  562. for i, label in enumerate(labels):
  563. l_name = 'label_' + str(i)
  564. data[g].edges[n[0], n[1]][l_name] = label
  565. label_names['edge_labels'].append(l_name)
  566. else:
  567. for i, l_name in enumerate(label_names['edge_labels']):
  568. data[g].edges[n[0], n[1]][l_name] = labels[i]
  569. # add node attributes
  570. if 'fna' in locals():
  571. content_na = open(fna).read().splitlines()
  572. for idx, line in enumerate(content_na):
  573. attrs = [a.strip() for a in line.split(',')]
  574. g = int(content_gi[idx]) - 1
  575. if label_names['node_attrs'] == []:
  576. for i, attr in enumerate(attrs):
  577. a_name = 'attr_' + str(i)
  578. data[g].nodes[idx][a_name] = attr
  579. label_names['node_attrs'].append(a_name)
  580. else:
  581. for i, a_name in enumerate(label_names['node_attrs']):
  582. data[g].nodes[idx][a_name] = attrs[i]
  583. # add edge attributes
  584. if 'fea' in locals():
  585. content_ea = open(fea).read().splitlines()
  586. for idx, line in enumerate(content_ea):
  587. attrs = [a.strip() for a in line.split(',')]
  588. n = [int(i) - 1 for i in content_am[idx].split(',')]
  589. g = int(content_gi[n[0]]) - 1
  590. if label_names['edge_attrs'] == []:
  591. for i, attr in enumerate(attrs):
  592. a_name = 'attr_' + str(i)
  593. data[g].edges[n[0], n[1]][a_name] = attr
  594. label_names['edge_attrs'].append(a_name)
  595. else:
  596. for i, a_name in enumerate(label_names['edge_attrs']):
  597. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  598. return data, targets, label_names
  599. def loadFromXML(filename, dir_dataset=None):
  600. import xml.etree.ElementTree as ET
  601. if dir_dataset is not None:
  602. dir_dataset = dir_dataset
  603. else:
  604. dir_dataset = dirname(filename)
  605. tree = ET.parse(filename)
  606. root = tree.getroot()
  607. data = []
  608. y = []
  609. for graph in root.iter('graph'):
  610. mol_filename = graph.attrib['file']
  611. mol_class = graph.attrib['class']
  612. data.append(load_gxl(dir_dataset + '/' + mol_filename))
  613. y.append(mol_class)
  614. return data, y
  615. def load_from_ds(filename, filename_targets):
  616. """Load data from .ds file.
  617. Possible graph formats include:
  618. '.ct': see function load_ct for detail.
  619. '.gxl': see dunction load_gxl for detail.
  620. Note these graph formats are checked automatically by the extensions of
  621. graph files.
  622. """
  623. dirname_dataset = dirname(filename)
  624. data = []
  625. y = []
  626. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  627. content = open(filename).read().splitlines()
  628. extension = splitext(content[0].split(' ')[0])[1][1:]
  629. if filename_targets is None or filename_targets == '':
  630. if extension == 'ct':
  631. for i in range(0, len(content)):
  632. tmp = content[i].split(' ')
  633. # remove the '#'s in file names
  634. g, l_names = load_ct(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  635. data.append(g)
  636. __append_label_names(label_names, l_names)
  637. y.append(float(tmp[1]))
  638. elif extension == 'gxl':
  639. for i in range(0, len(content)):
  640. tmp = content[i].split(' ')
  641. # remove the '#'s in file names
  642. g, l_names = load_gxl(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  643. data.append(g)
  644. __append_label_names(label_names, l_names)
  645. y.append(float(tmp[1]))
  646. else: # y in a seperate file
  647. if extension == 'ct':
  648. for i in range(0, len(content)):
  649. tmp = content[i]
  650. # remove the '#'s in file names
  651. g, l_names = load_ct(dirname_dataset + '/' + tmp.replace('#', '', 1))
  652. data.append(g)
  653. __append_label_names(label_names, l_names)
  654. elif extension == 'gxl':
  655. for i in range(0, len(content)):
  656. tmp = content[i]
  657. # remove the '#'s in file names
  658. g, l_names = load_gxl(dirname_dataset + '/' + tmp.replace('#', '', 1))
  659. data.append(g)
  660. __append_label_names(label_names, l_names)
  661. content_y = open(filename_targets).read().splitlines()
  662. # assume entries in filename and filename_targets have the same order.
  663. for item in content_y:
  664. tmp = item.split(' ')
  665. # assume the 3rd entry in a line is y (for Alkane dataset)
  666. y.append(float(tmp[2]))
  667. return data, y, label_names
  668. def __append_label_names(label_names, new_names):
  669. for key, val in label_names.items():
  670. label_names[key] += [name for name in new_names[key] if name not in val]
  671. if __name__ == '__main__':
  672. # ### Load dataset from .ds file.
  673. # # .ct files.
  674. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  675. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  676. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  677. ds_file = '../../datasets/acyclic/dataset_bps.ds' # node symb
  678. Gn, targets, label_names = load_dataset(ds_file)
  679. ## ds = {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds'} # node/edge symb
  680. ## Gn, y = loadDataset(ds['dataset'])
  681. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  682. ## Gn, y = loadDataset(ds['dataset'])
  683. print(Gn[1].graph)
  684. print(Gn[1].nodes(data=True))
  685. print(Gn[1].edges(data=True))
  686. print(targets[1])
  687. # # .gxl file.
  688. # ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
  689. # Gn, y, label_names = load_dataset(ds_file)
  690. # print(Gn[1].graph)
  691. # print(Gn[1].nodes(data=True))
  692. # print(Gn[1].edges(data=True))
  693. # print(y[1])
  694. # ### Convert graph from one format to another.
  695. # # .gxl file.
  696. # import networkx as nx
  697. # ds = {'name': 'monoterpenoides',
  698. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  699. # Gn, y = loadDataset(ds['dataset'])
  700. # y = [int(i) for i in y]
  701. # print(Gn[1].nodes(data=True))
  702. # print(Gn[1].edges(data=True))
  703. # print(y[1])
  704. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  705. # Gn_new = []
  706. # for G in Gn:
  707. # G_new = nx.Graph()
  708. # for nd, attrs in G.nodes(data=True):
  709. # G_new.add_node(str(nd), chem=attrs['atom'])
  710. # for nd1, nd2, attrs in G.edges(data=True):
  711. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  712. ## G_new.add_edge(str(nd1), str(nd2))
  713. # Gn_new.append(G_new)
  714. # print(Gn_new[1].nodes(data=True))
  715. # print(Gn_new[1].edges(data=True))
  716. # print(Gn_new[1])
  717. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  718. # xparams = {'method': 'gedlib'}
  719. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  720. # save dataset.
  721. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  722. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  723. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  724. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  725. # test - new way to add labels and attributes.
  726. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  727. # filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
  728. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  729. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  730. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  731. # Gn, targets, label_names = load_dataset(filename)
  732. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.