You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_spkernel.py 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. # %load_ext line_profiler
  2. # %matplotlib inline
  3. import functools
  4. from libs import *
  5. import multiprocessing
  6. from sklearn.metrics.pairwise import rbf_kernel
  7. from pygraph.kernels.spKernel import spkernel, spkernel_do
  8. from pygraph.utils.kernels import deltakernel, kernelproduct
  9. from pygraph.utils.model_selection_precomputed import trial_do
  10. dslist = [
  11. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds',
  12. # 'task': 'regression'}, # node symb
  13. # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  14. # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt', }, # contains single node graph, node symb
  15. # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds', }, # node/edge symb
  16. # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds', }, # unlabeled
  17. # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  18. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
  19. {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  20. # # node symb/nsymb
  21. # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},
  22. # # node/edge symb
  23. # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'},
  24. # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  25. # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
  26. # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  27. # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  28. # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  29. # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  30. #
  31. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  32. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  33. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  34. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  35. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  36. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  37. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  38. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  39. # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  40. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  41. # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  42. # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  43. # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  44. # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  45. # # not working below
  46. # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  47. # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  48. # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  49. # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  50. ]
  51. estimator = spkernel
  52. mixkernel = functools.partial(kernelproduct, deltakernel, rbf_kernel)
  53. param_grid_precomputed = {'node_kernels': [
  54. {'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}
  55. param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)},
  56. {'alpha': np.logspace(-10, 10, num=41, base=10)}]
  57. for ds in dslist:
  58. print()
  59. print(ds['name'])
  60. model_selection_for_precomputed_kernel(
  61. ds['dataset'],
  62. estimator,
  63. param_grid_precomputed,
  64. (param_grid[1] if ('task' in ds and ds['task']
  65. == 'regression') else param_grid[0]),
  66. (ds['task'] if 'task' in ds else 'classification'),
  67. NUM_TRIALS=30,
  68. datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  69. extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  70. ds_name=ds['name'],
  71. n_jobs=multiprocessing.cpu_count(),
  72. read_gm_from_file=False)
  73. # %lprun -f trial_do -f spkernel -f spkernel_do -f model_selection_for_precomputed_kernel \
  74. # model_selection_for_precomputed_kernel( \
  75. # ds['dataset'], \
  76. # estimator, \
  77. # param_grid_precomputed, \
  78. # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \
  79. # (ds['task'] if 'task' in ds else 'classification'), \
  80. # NUM_TRIALS=30, \
  81. # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \
  82. # extra_params=(ds['extra_params'] if 'extra_params' in ds else None), \
  83. # ds_name=ds['name'], \
  84. # n_jobs=multiprocessing.cpu_count())
  85. print()
  86. # import functools
  87. # from libs import *
  88. # from pygraph.kernels.spKernel import spkernel
  89. # from pygraph.utils.kernels import deltakernel, kernelsum
  90. # from sklearn.metrics.pairwise import rbf_kernel
  91. # dslist = [
  92. # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb
  93. # # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb
  94. # # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled
  95. # # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb
  96. # # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',
  97. # # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb
  98. # # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression',
  99. # # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb
  100. # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb
  101. # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb
  102. # # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb
  103. # # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb
  104. # # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},
  105. # # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},
  106. # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb
  107. # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb
  108. # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb
  109. # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb
  110. # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb
  111. # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb
  112. # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb
  113. # # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',
  114. # # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb
  115. # # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb
  116. # # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',
  117. # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  118. # # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',
  119. # # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb
  120. # # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',
  121. # # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb
  122. # # # not working below
  123. # # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},
  124. # # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},
  125. # # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},
  126. # # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},
  127. # ]
  128. # estimator = spkernel
  129. # mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)
  130. # param_grid_precomputed = {'node_kernels': [{'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}
  131. # param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)},
  132. # {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]
  133. # for ds in dslist:
  134. # print()
  135. # print(ds['name'])
  136. # model_selection_for_precomputed_kernel(
  137. # ds['dataset'], estimator, param_grid_precomputed,
  138. # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]),
  139. # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,
  140. # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),
  141. # extra_params=(ds['extra_params'] if 'extra_params' in ds else None),
  142. # ds_name=ds['name'])
  143. # # %lprun -f spkernel \
  144. # # model_selection_for_precomputed_kernel( \
  145. # # ds['dataset'], estimator, param_grid_precomputed, \
  146. # # (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \
  147. # # (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30, \
  148. # # datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \
  149. # # extra_params=(ds['extra_params'] if 'extra_params' in ds else None))
  150. # print()

A Python package for graph kernels, graph edit distances and graph pre-image problem.