You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

structuralspKernel.py 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Thu Sep 27 10:56:23 2018
  5. @author: linlin
  6. @references: Suard F, Rakotomamonjy A, Bensrhair A. Kernel on Bag of Paths For
  7. Measuring Similarity of Shapes. InESANN 2007 Apr 25 (pp. 355-360).
  8. """
  9. import sys
  10. import time
  11. from itertools import combinations, product
  12. from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import networkx as nx
  16. import numpy as np
  17. from pygraph.utils.graphdataset import get_dataset_attributes
  18. from pygraph.utils.parallel import parallel_gm
  19. from pygraph.utils.trie import Trie
  20. sys.path.insert(0, "../")
  21. def structuralspkernel(*args,
  22. node_label='atom',
  23. edge_weight=None,
  24. edge_label='bond_type',
  25. node_kernels=None,
  26. edge_kernels=None,
  27. compute_method='naive',
  28. n_jobs=None):
  29. """Calculate mean average structural shortest path kernels between graphs.
  30. Parameters
  31. ----------
  32. Gn : List of NetworkX graph
  33. List of graphs between which the kernels are calculated.
  34. /
  35. G1, G2 : NetworkX graphs
  36. 2 graphs between which the kernel is calculated.
  37. node_label : string
  38. node attribute used as label. The default node label is atom.
  39. edge_weight : string
  40. Edge attribute name corresponding to the edge weight.
  41. edge_label : string
  42. edge attribute used as label. The default edge label is bond_type.
  43. node_kernels: dict
  44. A dictionary of kernel functions for nodes, including 3 items: 'symb'
  45. for symbolic node labels, 'nsymb' for non-symbolic node labels, 'mix'
  46. for both labels. The first 2 functions take two node labels as
  47. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  48. non-symbolic label for each the two nodes. Each label is in form of 2-D
  49. dimension array (n_samples, n_features). Each function returns a number
  50. as the kernel value. Ignored when nodes are unlabeled.
  51. edge_kernels: dict
  52. A dictionary of kernel functions for edges, including 3 items: 'symb'
  53. for symbolic edge labels, 'nsymb' for non-symbolic edge labels, 'mix'
  54. for both labels. The first 2 functions take two edge labels as
  55. parameters, and the 'mix' function takes 4 parameters, a symbolic and a
  56. non-symbolic label for each the two edges. Each label is in form of 2-D
  57. dimension array (n_samples, n_features). Each function returns a number
  58. as the kernel value. Ignored when edges are unlabeled.
  59. Return
  60. ------
  61. Kmatrix : Numpy matrix
  62. Kernel matrix, each element of which is the mean average structural
  63. shortest path kernel between 2 praphs.
  64. """
  65. # pre-process
  66. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  67. weight = None
  68. if edge_weight is None:
  69. print('\n None edge weight specified. Set all weight to 1.\n')
  70. else:
  71. try:
  72. some_weight = list(
  73. nx.get_edge_attributes(Gn[0], edge_weight).values())[0]
  74. if isinstance(some_weight, (float, int)):
  75. weight = edge_weight
  76. else:
  77. print(
  78. '\n Edge weight with name %s is not float or integer. Set all weight to 1.\n'
  79. % edge_weight)
  80. except:
  81. print(
  82. '\n Edge weight with name "%s" is not found in the edge attributes. Set all weight to 1.\n'
  83. % edge_weight)
  84. ds_attrs = get_dataset_attributes(
  85. Gn,
  86. attr_names=['node_labeled', 'node_attr_dim', 'edge_labeled',
  87. 'edge_attr_dim', 'is_directed'],
  88. node_label=node_label, edge_label=edge_label)
  89. start_time = time.time()
  90. # get shortest paths of each graph in Gn
  91. splist = [None] * len(Gn)
  92. pool = Pool(n_jobs)
  93. itr = zip(Gn, range(0, len(Gn)))
  94. if len(Gn) < 100 * n_jobs:
  95. chunksize = int(len(Gn) / n_jobs) + 1
  96. else:
  97. chunksize = 100
  98. # get shortest path graphs of Gn
  99. if compute_method == 'trie':
  100. getsp_partial = partial(wrapper_getSP_trie, weight, ds_attrs['is_directed'])
  101. else:
  102. getsp_partial = partial(wrapper_getSP_naive, weight, ds_attrs['is_directed'])
  103. for i, sp in tqdm(
  104. pool.imap_unordered(getsp_partial, itr, chunksize),
  105. desc='getting shortest paths',
  106. file=sys.stdout):
  107. splist[i] = sp
  108. # time.sleep(10)
  109. pool.close()
  110. pool.join()
  111. # ss = 0
  112. # ss += sys.getsizeof(splist)
  113. # for spss in splist:
  114. # ss += sys.getsizeof(spss)
  115. # for spp in spss:
  116. # ss += sys.getsizeof(spp)
  117. # time.sleep(20)
  118. # # ---- direct running, normally use single CPU core. ----
  119. # splist = []
  120. # if compute_method == 'trie':
  121. # for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout):
  122. # splist.append(get_sps_as_trie(g, weight, ds_attrs['is_directed']))
  123. # else:
  124. # for g in tqdm(Gn, desc='getting sp graphs', file=sys.stdout):
  125. # splist.append(get_shortest_paths(g, weight, ds_attrs['is_directed']))
  126. # # ---- only for the Fast Computation of Shortest Path Kernel (FCSP)
  127. # sp_ml = [0] * len(Gn) # shortest path matrices
  128. # for i in result_sp:
  129. # sp_ml[i[0]] = i[1]
  130. # edge_x_g = [[] for i in range(len(sp_ml))]
  131. # edge_y_g = [[] for i in range(len(sp_ml))]
  132. # edge_w_g = [[] for i in range(len(sp_ml))]
  133. # for idx, item in enumerate(sp_ml):
  134. # for i1 in range(len(item)):
  135. # for i2 in range(i1 + 1, len(item)):
  136. # if item[i1, i2] != np.inf:
  137. # edge_x_g[idx].append(i1)
  138. # edge_y_g[idx].append(i2)
  139. # edge_w_g[idx].append(item[i1, i2])
  140. # print(len(edge_x_g[0]))
  141. # print(len(edge_y_g[0]))
  142. # print(len(edge_w_g[0]))
  143. Kmatrix = np.zeros((len(Gn), len(Gn)))
  144. # ---- use pool.imap_unordered to parallel and track progress. ----
  145. def init_worker(spl_toshare, gs_toshare):
  146. global G_spl, G_gs
  147. G_spl = spl_toshare
  148. G_gs = gs_toshare
  149. if compute_method == 'trie':
  150. do_partial = partial(wrapper_ssp_do_trie, ds_attrs, node_label, edge_label,
  151. node_kernels, edge_kernels)
  152. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  153. glbv=(splist, Gn), n_jobs=n_jobs)
  154. else:
  155. do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  156. node_kernels, edge_kernels)
  157. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  158. glbv=(splist, Gn), n_jobs=n_jobs)
  159. # # ---- use pool.map to parallel. ----
  160. # pool = Pool(n_jobs)
  161. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  162. # node_kernels, edge_kernels)
  163. # itr = zip(combinations_with_replacement(Gn, 2),
  164. # combinations_with_replacement(splist, 2),
  165. # combinations_with_replacement(range(0, len(Gn)), 2))
  166. # for i, j, kernel in tqdm(
  167. # pool.map(do_partial, itr), desc='calculating kernels',
  168. # file=sys.stdout):
  169. # Kmatrix[i][j] = kernel
  170. # Kmatrix[j][i] = kernel
  171. # pool.close()
  172. # pool.join()
  173. # # ---- use pool.imap_unordered to parallel and track progress. ----
  174. # do_partial = partial(wrapper_ssp_do, ds_attrs, node_label, edge_label,
  175. # node_kernels, edge_kernels)
  176. # itr = zip(combinations_with_replacement(Gn, 2),
  177. # combinations_with_replacement(splist, 2),
  178. # combinations_with_replacement(range(0, len(Gn)), 2))
  179. # len_itr = int(len(Gn) * (len(Gn) + 1) / 2)
  180. # if len_itr < 1000 * n_jobs:
  181. # chunksize = int(len_itr / n_jobs) + 1
  182. # else:
  183. # chunksize = 1000
  184. # from contextlib import closing
  185. # with closing(Pool(n_jobs)) as pool:
  186. # for i, j, kernel in tqdm(
  187. # pool.imap_unordered(do_partial, itr, 1000),
  188. # desc='calculating kernels',
  189. # file=sys.stdout):
  190. # Kmatrix[i][j] = kernel
  191. # Kmatrix[j][i] = kernel
  192. # pool.close()
  193. # pool.join()
  194. # # ---- direct running, normally use single CPU core. ----
  195. # from itertools import combinations_with_replacement
  196. # itr = combinations_with_replacement(range(0, len(Gn)), 2)
  197. # if compute_method == 'trie':
  198. # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
  199. # kernel = ssp_do_trie(Gn[i], Gn[j], splist[i], splist[j],
  200. # ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  201. # Kmatrix[i][j] = kernel
  202. # Kmatrix[j][i] = kernel
  203. # else:
  204. # for i, j in tqdm(itr, desc='calculating kernels', file=sys.stdout):
  205. # kernel = structuralspkernel_do(Gn[i], Gn[j], splist[i], splist[j],
  206. # ds_attrs, node_label, edge_label, node_kernels, edge_kernels)
  207. # # if(kernel > 1):
  208. # # print("error here ")
  209. # Kmatrix[i][j] = kernel
  210. # Kmatrix[j][i] = kernel
  211. run_time = time.time() - start_time
  212. print(
  213. "\n --- shortest path kernel matrix of size %d built in %s seconds ---"
  214. % (len(Gn), run_time))
  215. return Kmatrix, run_time
  216. def structuralspkernel_do(g1, g2, spl1, spl2, ds_attrs, node_label, edge_label,
  217. node_kernels, edge_kernels):
  218. kernel = 0
  219. # First, compute shortest path matrices, method borrowed from FCSP.
  220. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  221. # Then, compute kernels between all pairs of edges, which is an idea of
  222. # extension of FCSP. It suits sparse graphs, which is the most case we
  223. # went though. For dense graphs, this would be slow.
  224. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  225. # compute graph kernels
  226. if vk_dict:
  227. if ek_dict:
  228. for p1, p2 in product(spl1, spl2):
  229. if len(p1) == len(p2):
  230. kpath = vk_dict[(p1[0], p2[0])]
  231. if kpath:
  232. for idx in range(1, len(p1)):
  233. kpath *= vk_dict[(p1[idx], p2[idx])] * \
  234. ek_dict[((p1[idx-1], p1[idx]),
  235. (p2[idx-1], p2[idx]))]
  236. if not kpath:
  237. break
  238. kernel += kpath # add up kernels of all paths
  239. else:
  240. for p1, p2 in product(spl1, spl2):
  241. if len(p1) == len(p2):
  242. kpath = vk_dict[(p1[0], p2[0])]
  243. if kpath:
  244. for idx in range(1, len(p1)):
  245. kpath *= vk_dict[(p1[idx], p2[idx])]
  246. if not kpath:
  247. break
  248. kernel += kpath # add up kernels of all paths
  249. else:
  250. if ek_dict:
  251. for p1, p2 in product(spl1, spl2):
  252. if len(p1) == len(p2):
  253. if len(p1) == 0:
  254. kernel += 1
  255. else:
  256. kpath = 1
  257. for idx in range(0, len(p1) - 1):
  258. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  259. (p2[idx], p2[idx+1]))]
  260. if not kpath:
  261. break
  262. kernel += kpath # add up kernels of all paths
  263. else:
  264. for p1, p2 in product(spl1, spl2):
  265. if len(p1) == len(p2):
  266. kernel += 1
  267. kernel = kernel / (len(spl1) * len(spl2)) # calculate mean average
  268. # # ---- exact implementation of the Fast Computation of Shortest Path Kernel (FCSP), reference [2], sadly it is slower than the current implementation
  269. # # compute vertex kernel matrix
  270. # try:
  271. # vk_mat = np.zeros((nx.number_of_nodes(g1),
  272. # nx.number_of_nodes(g2)))
  273. # g1nl = enumerate(g1.nodes(data=True))
  274. # g2nl = enumerate(g2.nodes(data=True))
  275. # for i1, n1 in g1nl:
  276. # for i2, n2 in g2nl:
  277. # vk_mat[i1][i2] = kn(
  278. # n1[1][node_label], n2[1][node_label],
  279. # [n1[1]['attributes']], [n2[1]['attributes']])
  280. # range1 = range(0, len(edge_w_g[i]))
  281. # range2 = range(0, len(edge_w_g[j]))
  282. # for i1 in range1:
  283. # x1 = edge_x_g[i][i1]
  284. # y1 = edge_y_g[i][i1]
  285. # w1 = edge_w_g[i][i1]
  286. # for i2 in range2:
  287. # x2 = edge_x_g[j][i2]
  288. # y2 = edge_y_g[j][i2]
  289. # w2 = edge_w_g[j][i2]
  290. # ke = (w1 == w2)
  291. # if ke > 0:
  292. # kn1 = vk_mat[x1][x2] * vk_mat[y1][y2]
  293. # kn2 = vk_mat[x1][y2] * vk_mat[y1][x2]
  294. # Kmatrix += kn1 + kn2
  295. return kernel
  296. def wrapper_ssp_do(ds_attrs, node_label, edge_label, node_kernels,
  297. edge_kernels, itr):
  298. i = itr[0]
  299. j = itr[1]
  300. return i, j, structuralspkernel_do(G_gs[i], G_gs[j], G_spl[i], G_spl[j],
  301. ds_attrs, node_label, edge_label,
  302. node_kernels, edge_kernels)
  303. def ssp_do_trie(g1, g2, trie1, trie2, ds_attrs, node_label, edge_label,
  304. node_kernels, edge_kernels):
  305. # # traverse all paths in graph1. Deep-first search is applied.
  306. # def traverseBothTrie(root, trie2, kernel, pcurrent=[]):
  307. # for key, node in root['children'].items():
  308. # pcurrent.append(key)
  309. # if node['isEndOfWord']:
  310. # # print(node['count'])
  311. # traverseTrie2(trie2.root, pcurrent, kernel,
  312. # pcurrent=[])
  313. # if node['children'] != {}:
  314. # traverseBothTrie(node, trie2, kernel, pcurrent)
  315. # else:
  316. # del pcurrent[-1]
  317. # if pcurrent != []:
  318. # del pcurrent[-1]
  319. #
  320. #
  321. # # traverse all paths in graph2 and find out those that are not in
  322. # # graph1. Deep-first search is applied.
  323. # def traverseTrie2(root, p1, kernel, pcurrent=[]):
  324. # for key, node in root['children'].items():
  325. # pcurrent.append(key)
  326. # if node['isEndOfWord']:
  327. # # print(node['count'])
  328. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  329. # if node['children'] != {}:
  330. # traverseTrie2(node, p1, kernel, pcurrent)
  331. # else:
  332. # del pcurrent[-1]
  333. # if pcurrent != []:
  334. # del pcurrent[-1]
  335. #
  336. #
  337. # kernel = [0]
  338. #
  339. # # First, compute shortest path matrices, method borrowed from FCSP.
  340. # vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  341. # # Then, compute kernels between all pairs of edges, which is an idea of
  342. # # extension of FCSP. It suits sparse graphs, which is the most case we
  343. # # went though. For dense graphs, this would be slow.
  344. # ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  345. #
  346. # # compute graph kernels
  347. # traverseBothTrie(trie1[0].root, trie2[0], kernel)
  348. #
  349. # kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  350. # # traverse all paths in graph1. Deep-first search is applied.
  351. # def traverseBothTrie(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  352. # for key, node in root['children'].items():
  353. # pcurrent.append(key)
  354. # if node['isEndOfWord']:
  355. # # print(node['count'])
  356. # traverseTrie2(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  357. # pcurrent=[])
  358. # if node['children'] != {}:
  359. # traverseBothTrie(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  360. # else:
  361. # del pcurrent[-1]
  362. # if pcurrent != []:
  363. # del pcurrent[-1]
  364. #
  365. #
  366. # # traverse all paths in graph2 and find out those that are not in
  367. # # graph1. Deep-first search is applied.
  368. # def traverseTrie2(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  369. # for key, node in root['children'].items():
  370. # pcurrent.append(key)
  371. # if node['isEndOfWord']:
  372. # # print(node['count'])
  373. # kernel[0] += computePathKernel(p1, pcurrent, vk_dict, ek_dict)
  374. # if node['children'] != {}:
  375. # traverseTrie2(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  376. # else:
  377. # del pcurrent[-1]
  378. # if pcurrent != []:
  379. # del pcurrent[-1]
  380. kernel = [0]
  381. # First, compute shortest path matrices, method borrowed from FCSP.
  382. vk_dict = getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs)
  383. # Then, compute kernels between all pairs of edges, which is an idea of
  384. # extension of FCSP. It suits sparse graphs, which is the most case we
  385. # went though. For dense graphs, this would be slow.
  386. ek_dict = getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs)
  387. # compute graph kernels
  388. # traverseBothTrie(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  389. if vk_dict:
  390. if ek_dict:
  391. traverseBothTriem(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  392. else:
  393. traverseBothTriev(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  394. else:
  395. if ek_dict:
  396. traverseBothTriee(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  397. else:
  398. traverseBothTrieu(trie1[0].root, trie2[0], kernel, vk_dict, ek_dict)
  399. kernel = kernel[0] / (trie1[1] * trie2[1]) # calculate mean average
  400. return kernel
  401. def wrapper_ssp_do_trie(ds_attrs, node_label, edge_label, node_kernels,
  402. edge_kernels, itr):
  403. i = itr[0]
  404. j = itr[1]
  405. return i, j, ssp_do_trie(G_gs[i], G_gs[j], G_spl[i], G_spl[j], ds_attrs,
  406. node_label, edge_label, node_kernels, edge_kernels)
  407. def getAllNodeKernels(g1, g2, node_kernels, node_label, ds_attrs):
  408. # compute shortest path matrices, method borrowed from FCSP.
  409. vk_dict = {} # shortest path matrices dict
  410. if ds_attrs['node_labeled']:
  411. # node symb and non-synb labeled
  412. if ds_attrs['node_attr_dim'] > 0:
  413. kn = node_kernels['mix']
  414. for n1, n2 in product(
  415. g1.nodes(data=True), g2.nodes(data=True)):
  416. vk_dict[(n1[0], n2[0])] = kn(
  417. n1[1][node_label], n2[1][node_label],
  418. n1[1]['attributes'], n2[1]['attributes'])
  419. # node symb labeled
  420. else:
  421. kn = node_kernels['symb']
  422. for n1 in g1.nodes(data=True):
  423. for n2 in g2.nodes(data=True):
  424. vk_dict[(n1[0], n2[0])] = kn(n1[1][node_label],
  425. n2[1][node_label])
  426. else:
  427. # node non-synb labeled
  428. if ds_attrs['node_attr_dim'] > 0:
  429. kn = node_kernels['nsymb']
  430. for n1 in g1.nodes(data=True):
  431. for n2 in g2.nodes(data=True):
  432. vk_dict[(n1[0], n2[0])] = kn(n1[1]['attributes'],
  433. n2[1]['attributes'])
  434. # node unlabeled
  435. else:
  436. pass
  437. return vk_dict
  438. def getAllEdgeKernels(g1, g2, edge_kernels, edge_label, ds_attrs):
  439. # compute kernels between all pairs of edges, which is an idea of
  440. # extension of FCSP. It suits sparse graphs, which is the most case we
  441. # went though. For dense graphs, this would be slow.
  442. ek_dict = {} # dict of edge kernels
  443. if ds_attrs['edge_labeled']:
  444. # edge symb and non-synb labeled
  445. if ds_attrs['edge_attr_dim'] > 0:
  446. ke = edge_kernels['mix']
  447. for e1, e2 in product(
  448. g1.edges(data=True), g2.edges(data=True)):
  449. ek_temp = ke(e1[2][edge_label], e2[2][edge_label],
  450. e1[2]['attributes'], e2[2]['attributes'])
  451. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  452. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  453. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  454. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  455. # edge symb labeled
  456. else:
  457. ke = edge_kernels['symb']
  458. for e1 in g1.edges(data=True):
  459. for e2 in g2.edges(data=True):
  460. ek_temp = ke(e1[2][edge_label], e2[2][edge_label])
  461. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  462. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  463. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  464. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  465. else:
  466. # edge non-synb labeled
  467. if ds_attrs['edge_attr_dim'] > 0:
  468. ke = edge_kernels['nsymb']
  469. for e1 in g1.edges(data=True):
  470. for e2 in g2.edges(data=True):
  471. ek_temp = ke(e1[2]['attributes'], e2[2]['attributes'])
  472. ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp
  473. ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp
  474. ek_dict[((e1[0], e1[1]), (e2[1], e2[0]))] = ek_temp
  475. ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp
  476. # edge unlabeled
  477. else:
  478. pass
  479. return ek_dict
  480. # traverse all paths in graph1. Deep-first search is applied.
  481. def traverseBothTriem(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  482. for key, node in root['children'].items():
  483. pcurrent.append(key)
  484. if node['isEndOfWord']:
  485. # print(node['count'])
  486. traverseTrie2m(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  487. pcurrent=[])
  488. if node['children'] != {}:
  489. traverseBothTriem(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  490. else:
  491. del pcurrent[-1]
  492. if pcurrent != []:
  493. del pcurrent[-1]
  494. # traverse all paths in graph2 and find out those that are not in
  495. # graph1. Deep-first search is applied.
  496. def traverseTrie2m(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  497. for key, node in root['children'].items():
  498. pcurrent.append(key)
  499. if node['isEndOfWord']:
  500. # print(node['count'])
  501. if len(p1) == len(pcurrent):
  502. kpath = vk_dict[(p1[0], pcurrent[0])]
  503. if kpath:
  504. for idx in range(1, len(p1)):
  505. kpath *= vk_dict[(p1[idx], pcurrent[idx])] * \
  506. ek_dict[((p1[idx-1], p1[idx]),
  507. (pcurrent[idx-1], pcurrent[idx]))]
  508. if not kpath:
  509. break
  510. kernel[0] += kpath # add up kernels of all paths
  511. if node['children'] != {}:
  512. traverseTrie2m(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  513. else:
  514. del pcurrent[-1]
  515. if pcurrent != []:
  516. del pcurrent[-1]
  517. # traverse all paths in graph1. Deep-first search is applied.
  518. def traverseBothTriev(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  519. for key, node in root['children'].items():
  520. pcurrent.append(key)
  521. if node['isEndOfWord']:
  522. # print(node['count'])
  523. traverseTrie2v(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  524. pcurrent=[])
  525. if node['children'] != {}:
  526. traverseBothTriev(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  527. else:
  528. del pcurrent[-1]
  529. if pcurrent != []:
  530. del pcurrent[-1]
  531. # traverse all paths in graph2 and find out those that are not in
  532. # graph1. Deep-first search is applied.
  533. def traverseTrie2v(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  534. for key, node in root['children'].items():
  535. pcurrent.append(key)
  536. if node['isEndOfWord']:
  537. # print(node['count'])
  538. if len(p1) == len(pcurrent):
  539. kpath = vk_dict[(p1[0], pcurrent[0])]
  540. if kpath:
  541. for idx in range(1, len(p1)):
  542. kpath *= vk_dict[(p1[idx], pcurrent[idx])]
  543. if not kpath:
  544. break
  545. kernel[0] += kpath # add up kernels of all paths
  546. if node['children'] != {}:
  547. traverseTrie2v(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  548. else:
  549. del pcurrent[-1]
  550. if pcurrent != []:
  551. del pcurrent[-1]
  552. # traverse all paths in graph1. Deep-first search is applied.
  553. def traverseBothTriee(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  554. for key, node in root['children'].items():
  555. pcurrent.append(key)
  556. if node['isEndOfWord']:
  557. # print(node['count'])
  558. traverseTrie2e(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  559. pcurrent=[])
  560. if node['children'] != {}:
  561. traverseBothTriee(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  562. else:
  563. del pcurrent[-1]
  564. if pcurrent != []:
  565. del pcurrent[-1]
  566. # traverse all paths in graph2 and find out those that are not in
  567. # graph1. Deep-first search is applied.
  568. def traverseTrie2e(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  569. for key, node in root['children'].items():
  570. pcurrent.append(key)
  571. if node['isEndOfWord']:
  572. # print(node['count'])
  573. if len(p1) == len(pcurrent):
  574. if len(p1) == 0:
  575. kernel += 1
  576. else:
  577. kpath = 1
  578. for idx in range(0, len(p1) - 1):
  579. kpath *= ek_dict[((p1[idx], p1[idx+1]),
  580. (pcurrent[idx], pcurrent[idx+1]))]
  581. if not kpath:
  582. break
  583. kernel[0] += kpath # add up kernels of all paths
  584. if node['children'] != {}:
  585. traverseTrie2e(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  586. else:
  587. del pcurrent[-1]
  588. if pcurrent != []:
  589. del pcurrent[-1]
  590. # traverse all paths in graph1. Deep-first search is applied.
  591. def traverseBothTrieu(root, trie2, kernel, vk_dict, ek_dict, pcurrent=[]):
  592. for key, node in root['children'].items():
  593. pcurrent.append(key)
  594. if node['isEndOfWord']:
  595. # print(node['count'])
  596. traverseTrie2u(trie2.root, pcurrent, kernel, vk_dict, ek_dict,
  597. pcurrent=[])
  598. if node['children'] != {}:
  599. traverseBothTrieu(node, trie2, kernel, vk_dict, ek_dict, pcurrent)
  600. else:
  601. del pcurrent[-1]
  602. if pcurrent != []:
  603. del pcurrent[-1]
  604. # traverse all paths in graph2 and find out those that are not in
  605. # graph1. Deep-first search is applied.
  606. def traverseTrie2u(root, p1, kernel, vk_dict, ek_dict, pcurrent=[]):
  607. for key, node in root['children'].items():
  608. pcurrent.append(key)
  609. if node['isEndOfWord']:
  610. # print(node['count'])
  611. if len(p1) == len(pcurrent):
  612. kernel[0] += 1
  613. if node['children'] != {}:
  614. traverseTrie2u(node, p1, kernel, vk_dict, ek_dict, pcurrent)
  615. else:
  616. del pcurrent[-1]
  617. if pcurrent != []:
  618. del pcurrent[-1]
  619. #def computePathKernel(p1, p2, vk_dict, ek_dict):
  620. # kernel = 0
  621. # if vk_dict:
  622. # if ek_dict:
  623. # if len(p1) == len(p2):
  624. # kpath = vk_dict[(p1[0], p2[0])]
  625. # if kpath:
  626. # for idx in range(1, len(p1)):
  627. # kpath *= vk_dict[(p1[idx], p2[idx])] * \
  628. # ek_dict[((p1[idx-1], p1[idx]),
  629. # (p2[idx-1], p2[idx]))]
  630. # if not kpath:
  631. # break
  632. # kernel += kpath # add up kernels of all paths
  633. # else:
  634. # if len(p1) == len(p2):
  635. # kpath = vk_dict[(p1[0], p2[0])]
  636. # if kpath:
  637. # for idx in range(1, len(p1)):
  638. # kpath *= vk_dict[(p1[idx], p2[idx])]
  639. # if not kpath:
  640. # break
  641. # kernel += kpath # add up kernels of all paths
  642. # else:
  643. # if ek_dict:
  644. # if len(p1) == len(p2):
  645. # if len(p1) == 0:
  646. # kernel += 1
  647. # else:
  648. # kpath = 1
  649. # for idx in range(0, len(p1) - 1):
  650. # kpath *= ek_dict[((p1[idx], p1[idx+1]),
  651. # (p2[idx], p2[idx+1]))]
  652. # if not kpath:
  653. # break
  654. # kernel += kpath # add up kernels of all paths
  655. # else:
  656. # if len(p1) == len(p2):
  657. # kernel += 1
  658. #
  659. # return kernel
  660. def get_shortest_paths(G, weight, directed):
  661. """Get all shortest paths of a graph.
  662. Parameters
  663. ----------
  664. G : NetworkX graphs
  665. The graphs whose paths are calculated.
  666. weight : string/None
  667. edge attribute used as weight to calculate the shortest path.
  668. directed: boolean
  669. Whether graph is directed.
  670. Return
  671. ------
  672. sp : list of list
  673. List of shortest paths of the graph, where each path is represented by a list of nodes.
  674. """
  675. sp = []
  676. for n1, n2 in combinations(G.nodes(), 2):
  677. try:
  678. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  679. except nx.NetworkXNoPath: # nodes not connected
  680. # sp.append([])
  681. pass
  682. else:
  683. sp += spltemp
  684. # each edge walk is counted twice, starting from both its extreme nodes.
  685. if not directed:
  686. sp += [sptemp[::-1] for sptemp in spltemp]
  687. # add single nodes as length 0 paths.
  688. sp += [[n] for n in G.nodes()]
  689. return sp
  690. def wrapper_getSP_naive(weight, directed, itr_item):
  691. g = itr_item[0]
  692. i = itr_item[1]
  693. return i, get_shortest_paths(g, weight, directed)
  694. def get_sps_as_trie(G, weight, directed):
  695. """Get all shortest paths of a graph and insert them into a trie.
  696. Parameters
  697. ----------
  698. G : NetworkX graphs
  699. The graphs whose paths are calculated.
  700. weight : string/None
  701. edge attribute used as weight to calculate the shortest path.
  702. directed: boolean
  703. Whether graph is directed.
  704. Return
  705. ------
  706. sp : list of list
  707. List of shortest paths of the graph, where each path is represented by a list of nodes.
  708. """
  709. sptrie = Trie()
  710. lensp = 0
  711. for n1, n2 in combinations(G.nodes(), 2):
  712. try:
  713. spltemp = list(nx.all_shortest_paths(G, n1, n2, weight=weight))
  714. except nx.NetworkXNoPath: # nodes not connected
  715. pass
  716. else:
  717. lensp += len(spltemp)
  718. if not directed:
  719. lensp += len(spltemp)
  720. for sp in spltemp:
  721. sptrie.insertWord(sp)
  722. # each edge walk is counted twice, starting from both its extreme nodes.
  723. if not directed:
  724. sptrie.insertWord(sp[::-1])
  725. # add single nodes as length 0 paths.
  726. for n in G.nodes():
  727. sptrie.insertWord([n])
  728. return sptrie, lensp + nx.number_of_nodes(G)
  729. def wrapper_getSP_trie(weight, directed, itr_item):
  730. g = itr_item[0]
  731. i = itr_item[1]
  732. return i, get_sps_as_trie(g, weight, directed)

A Python package for graph kernels, graph edit distances and graph pre-image problem.