You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

file_managers.py 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. class DataLoader():
  5. def __init__(self, filename, filename_targets=None, gformat=None, **kwargs):
  6. """Read graph data from filename and load them as NetworkX graphs.
  7. Parameters
  8. ----------
  9. filename : string
  10. The name of the file from where the dataset is read.
  11. filename_targets : string
  12. The name of file of the targets corresponding to graphs.
  13. Notes
  14. -----
  15. This function supports following graph dataset formats:
  16. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  17. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  18. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  19. 'sdf': load data from structured data file (.sdf file). See
  20. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  21. for details.
  22. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  23. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  24. for details.
  25. 'txt': Load graph data from the TUDataset. See
  26. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  27. for details. Note here filename is the name of either .txt file in
  28. the dataset directory.
  29. """
  30. extension = splitext(filename)[1][1:]
  31. if extension == "ds":
  32. self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets)
  33. elif extension == "cxl":
  34. dir_dataset = kwargs.get('dirname_dataset', None)
  35. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  36. elif extension == 'xml':
  37. dir_dataset = kwargs.get('dirname_dataset', None)
  38. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  39. elif extension == "mat":
  40. order = kwargs.get('order')
  41. self._graphs, self._targets, self._label_names = self.load_mat(filename, order)
  42. elif extension == 'txt':
  43. self._graphs, self._targets, self._label_names = self.load_tud(filename)
  44. else:
  45. raise ValueError('The input file with the extension ".', extension, '" is not supported. The supported extensions includes: ".ds", ".cxl", ".xml", ".mat", ".txt".')
  46. def load_from_ds(self, filename, filename_targets):
  47. """Load data from .ds file.
  48. Possible graph formats include:
  49. '.ct': see function load_ct for detail.
  50. '.gxl': see dunction load_gxl for detail.
  51. Note these graph formats are checked automatically by the extensions of
  52. graph files.
  53. """
  54. dirname_dataset = dirname(filename)
  55. data = []
  56. y = []
  57. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  58. with open(filename) as fn:
  59. content = fn.read().splitlines()
  60. extension = splitext(content[0].split(' ')[0])[1][1:]
  61. if extension == 'ct':
  62. load_file_fun = self.load_ct
  63. elif extension == 'gxl' or extension == 'sdf': # @todo: .sdf not tested yet.
  64. load_file_fun = self.load_gxl
  65. if filename_targets is None or filename_targets == '':
  66. for i in range(0, len(content)):
  67. tmp = content[i].split(' ')
  68. # remove the '#'s in file names
  69. g, l_names = load_file_fun(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  70. data.append(g)
  71. self._append_label_names(label_names, l_names)
  72. y.append(float(tmp[1]))
  73. else: # targets in a seperate file
  74. for i in range(0, len(content)):
  75. tmp = content[i]
  76. # remove the '#'s in file names
  77. g, l_names = load_file_fun(dirname_dataset + '/' + tmp.replace('#', '', 1))
  78. data.append(g)
  79. self._append_label_names(label_names, l_names)
  80. with open(filename_targets) as fnt:
  81. content_y = fnt.read().splitlines()
  82. # assume entries in filename and filename_targets have the same order.
  83. for item in content_y:
  84. tmp = item.split(' ')
  85. # assume the 3rd entry in a line is y (for Alkane dataset)
  86. y.append(float(tmp[2]))
  87. return data, y, label_names
  88. def load_from_xml(self, filename, dir_dataset=None):
  89. import xml.etree.ElementTree as ET
  90. if dir_dataset is not None:
  91. dir_dataset = dir_dataset
  92. else:
  93. dir_dataset = dirname(filename)
  94. tree = ET.parse(filename)
  95. root = tree.getroot()
  96. data = []
  97. y = []
  98. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  99. for graph in root.iter('graph'):
  100. mol_filename = graph.attrib['file']
  101. mol_class = graph.attrib['class']
  102. g, l_names = self.load_gxl(dir_dataset + '/' + mol_filename)
  103. data.append(g)
  104. self._append_label_names(label_names, l_names)
  105. y.append(mol_class)
  106. return data, y, label_names
  107. def load_mat(self, filename, order): # @todo: need to be updated (auto order) or deprecated.
  108. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  109. Notes
  110. ------
  111. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  112. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  113. """
  114. from scipy.io import loadmat
  115. import numpy as np
  116. import networkx as nx
  117. data = []
  118. content = loadmat(filename)
  119. for key, value in content.items():
  120. if key[0] == 'l': # class label
  121. y = np.transpose(value)[0].tolist()
  122. elif key[0] != '_':
  123. # if adjacency matrix is not compressed / edge label exists
  124. if order[1] == 0:
  125. for i, item in enumerate(value[0]):
  126. g = nx.Graph(name=i) # set name of the graph
  127. nl = np.transpose(item[order[3]][0][0][0]) # node label
  128. for index, label in enumerate(nl[0]):
  129. g.add_node(index, label_1=str(label))
  130. el = item[order[4]][0][0][0] # edge label
  131. for edge in el:
  132. g.add_edge(edge[0] - 1, edge[1] - 1, label_1=str(edge[2]))
  133. data.append(g)
  134. else:
  135. for i, item in enumerate(value[0]):
  136. g = nx.Graph(name=i) # set name of the graph
  137. nl = np.transpose(item[order[3]][0][0][0]) # node label
  138. for index, label in enumerate(nl[0]):
  139. g.add_node(index, label_1=str(label))
  140. sam = item[order[0]] # sparse adjacency matrix
  141. index_no0 = sam.nonzero()
  142. for col, row in zip(index_no0[0], index_no0[1]):
  143. g.add_edge(col, row)
  144. data.append(g)
  145. label_names = {'node_labels': ['label_1'], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  146. if order[1] == 0:
  147. label_names['edge_labels'].append('label_1')
  148. return data, y, label_names
  149. def load_tud(self, filename):
  150. """Load graph data from TUD dataset files.
  151. Notes
  152. ------
  153. The graph data is loaded from separate files.
  154. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  155. """
  156. import networkx as nx
  157. from os import listdir
  158. from os.path import dirname, basename
  159. def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
  160. """Get information from DS_label_readme.txt file.
  161. """
  162. def get_label_names_from_line(line):
  163. """Get names of labels/attributes from a line.
  164. """
  165. str_names = line.split('[')[1].split(']')[0]
  166. names = str_names.split(',')
  167. names = [attr.strip() for attr in names]
  168. return names
  169. def get_class_label_map(label_map_strings):
  170. label_map = {}
  171. for string in label_map_strings:
  172. integer, label = string.split('\t')
  173. label_map[int(integer.strip())] = label.strip()
  174. return label_map
  175. label_names = {'node_labels': [], 'node_attrs': [],
  176. 'edge_labels': [], 'edge_attrs': []}
  177. class_label_map = None
  178. class_label_map_strings = []
  179. with open(frm) as rm:
  180. content_rm = rm.read().splitlines()
  181. i = 0
  182. while i < len(content_rm):
  183. line = content_rm[i].strip()
  184. # get node/edge labels and attributes.
  185. if line.startswith('Node labels:'):
  186. label_names['node_labels'] = get_label_names_from_line(line)
  187. elif line.startswith('Node attributes:'):
  188. label_names['node_attrs'] = get_label_names_from_line(line)
  189. elif line.startswith('Edge labels:'):
  190. label_names['edge_labels'] = get_label_names_from_line(line)
  191. elif line.startswith('Edge attributes:'):
  192. label_names['edge_attrs'] = get_label_names_from_line(line)
  193. # get class label map.
  194. elif line.startswith('Class labels were converted to integer values using this map:'):
  195. i += 2
  196. line = content_rm[i].strip()
  197. while line != '' and i < len(content_rm):
  198. class_label_map_strings.append(line)
  199. i += 1
  200. line = content_rm[i].strip()
  201. class_label_map = get_class_label_map(class_label_map_strings)
  202. i += 1
  203. return label_names, class_label_map
  204. # get dataset name.
  205. dirname_dataset = dirname(filename)
  206. filename = basename(filename)
  207. fn_split = filename.split('_A')
  208. ds_name = fn_split[0].strip()
  209. # load data file names
  210. for name in listdir(dirname_dataset):
  211. if ds_name + '_A' in name:
  212. fam = dirname_dataset + '/' + name
  213. elif ds_name + '_graph_indicator' in name:
  214. fgi = dirname_dataset + '/' + name
  215. elif ds_name + '_graph_labels' in name:
  216. fgl = dirname_dataset + '/' + name
  217. elif ds_name + '_node_labels' in name:
  218. fnl = dirname_dataset + '/' + name
  219. elif ds_name + '_edge_labels' in name:
  220. fel = dirname_dataset + '/' + name
  221. elif ds_name + '_edge_attributes' in name:
  222. fea = dirname_dataset + '/' + name
  223. elif ds_name + '_node_attributes' in name:
  224. fna = dirname_dataset + '/' + name
  225. elif ds_name + '_graph_attributes' in name:
  226. fga = dirname_dataset + '/' + name
  227. elif ds_name + '_label_readme' in name:
  228. frm = dirname_dataset + '/' + name
  229. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  230. elif ds_name + '_attributes' in name:
  231. fna = dirname_dataset + '/' + name
  232. # get labels and attributes names.
  233. if 'frm' in locals():
  234. label_names, class_label_map = get_infos_from_readme(frm)
  235. else:
  236. label_names = {'node_labels': [], 'node_attrs': [],
  237. 'edge_labels': [], 'edge_attrs': []}
  238. class_label_map = None
  239. with open(fgi) as gi:
  240. content_gi = gi.read().splitlines() # graph indicator
  241. with open(fam) as am:
  242. content_am = am.read().splitlines() # adjacency matrix
  243. # load targets.
  244. if 'fgl' in locals():
  245. with open(fgl) as gl:
  246. content_targets = gl.read().splitlines() # targets (classification)
  247. targets = [float(i) for i in content_targets]
  248. elif 'fga' in locals():
  249. with open(fga) as ga:
  250. content_targets = ga.read().splitlines() # targets (regression)
  251. targets = [int(i) for i in content_targets]
  252. else:
  253. raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
  254. if class_label_map is not None:
  255. targets = [class_label_map[t] for t in targets]
  256. # create graphs and add nodes
  257. data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
  258. if 'fnl' in locals():
  259. with open(fnl) as nl:
  260. content_nl = nl.read().splitlines() # node labels
  261. for idx, line in enumerate(content_gi):
  262. # transfer to int first in case of unexpected blanks
  263. data[int(line) - 1].add_node(idx)
  264. labels = [l.strip() for l in content_nl[idx].split(',')]
  265. if label_names['node_labels'] == []: # @todo: need fix bug.
  266. for i, label in enumerate(labels):
  267. l_name = 'label_' + str(i)
  268. data[int(line) - 1].nodes[idx][l_name] = label
  269. label_names['node_labels'].append(l_name)
  270. else:
  271. for i, l_name in enumerate(label_names['node_labels']):
  272. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  273. else:
  274. for i, line in enumerate(content_gi):
  275. data[int(line) - 1].add_node(i)
  276. # add edges
  277. for line in content_am:
  278. tmp = line.split(',')
  279. n1 = int(tmp[0]) - 1
  280. n2 = int(tmp[1]) - 1
  281. # ignore edge weight here.
  282. g = int(content_gi[n1]) - 1
  283. data[g].add_edge(n1, n2)
  284. # add edge labels
  285. if 'fel' in locals():
  286. with open(fel) as el:
  287. content_el = el.read().splitlines()
  288. for idx, line in enumerate(content_el):
  289. labels = [l.strip() for l in line.split(',')]
  290. n = [int(i) - 1 for i in content_am[idx].split(',')]
  291. g = int(content_gi[n[0]]) - 1
  292. if label_names['edge_labels'] == []:
  293. for i, label in enumerate(labels):
  294. l_name = 'label_' + str(i)
  295. data[g].edges[n[0], n[1]][l_name] = label
  296. label_names['edge_labels'].append(l_name)
  297. else:
  298. for i, l_name in enumerate(label_names['edge_labels']):
  299. data[g].edges[n[0], n[1]][l_name] = labels[i]
  300. # add node attributes
  301. if 'fna' in locals():
  302. with open(fna) as na:
  303. content_na = na.read().splitlines()
  304. for idx, line in enumerate(content_na):
  305. attrs = [a.strip() for a in line.split(',')]
  306. g = int(content_gi[idx]) - 1
  307. if label_names['node_attrs'] == []:
  308. for i, attr in enumerate(attrs):
  309. a_name = 'attr_' + str(i)
  310. data[g].nodes[idx][a_name] = attr
  311. label_names['node_attrs'].append(a_name)
  312. else:
  313. for i, a_name in enumerate(label_names['node_attrs']):
  314. data[g].nodes[idx][a_name] = attrs[i]
  315. # add edge attributes
  316. if 'fea' in locals():
  317. with open(fea) as ea:
  318. content_ea = ea.read().splitlines()
  319. for idx, line in enumerate(content_ea):
  320. attrs = [a.strip() for a in line.split(',')]
  321. n = [int(i) - 1 for i in content_am[idx].split(',')]
  322. g = int(content_gi[n[0]]) - 1
  323. if label_names['edge_attrs'] == []:
  324. for i, attr in enumerate(attrs):
  325. a_name = 'attr_' + str(i)
  326. data[g].edges[n[0], n[1]][a_name] = attr
  327. label_names['edge_attrs'].append(a_name)
  328. else:
  329. for i, a_name in enumerate(label_names['edge_attrs']):
  330. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  331. return data, targets, label_names
  332. def load_ct(self, filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
  333. """load data from a Chemical Table (.ct) file.
  334. Notes
  335. ------
  336. a typical example of data in .ct is like this:
  337. 3 2 <- number of nodes and edges
  338. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  339. 0.0000 0.0000 0.0000 C
  340. 0.0000 0.0000 0.0000 O
  341. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  342. 2 3 1 1
  343. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  344. for detailed format discription.
  345. """
  346. import networkx as nx
  347. from os.path import basename
  348. g = nx.Graph()
  349. with open(filename) as f:
  350. content = f.read().splitlines()
  351. g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
  352. # read the counts line.
  353. tmp = content[1].split(' ')
  354. tmp = [x for x in tmp if x != '']
  355. nb_atoms = int(tmp[0].strip()) # number of atoms
  356. nb_bonds = int(tmp[1].strip()) # number of bonds
  357. count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
  358. i = 0
  359. while i < len(tmp):
  360. if count_line_tags[i] != '': # if not obsoleted
  361. g.graph[count_line_tags[i]] = tmp[i].strip()
  362. i += 1
  363. # read the atom block.
  364. atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
  365. for i in range(0, nb_atoms):
  366. tmp = content[i + 2].split(' ')
  367. tmp = [x for x in tmp if x != '']
  368. g.add_node(i)
  369. j = 0
  370. while j < len(tmp):
  371. if atom_tags[j] != '':
  372. g.nodes[i][atom_tags[j]] = tmp[j].strip()
  373. j += 1
  374. # read the bond block.
  375. bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
  376. for i in range(0, nb_bonds):
  377. tmp = content[i + g.number_of_nodes() + 2].split(' ')
  378. tmp = [x for x in tmp if x != '']
  379. n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
  380. g.add_edge(n1, n2)
  381. j = 2
  382. while j < len(tmp):
  383. if bond_tags[j] != '':
  384. g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
  385. j += 1
  386. # get label names.
  387. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  388. atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
  389. for nd in g.nodes():
  390. for key in g.nodes[nd]:
  391. if atom_symbolic[atom_tags.index(key)] == 1:
  392. label_names['node_labels'].append(key)
  393. else:
  394. label_names['node_attrs'].append(key)
  395. break
  396. bond_symbolic = [None, None, 1, 1, None, 1, 1]
  397. for ed in g.edges():
  398. for key in g.edges[ed]:
  399. if bond_symbolic[bond_tags.index(key)] == 1:
  400. label_names['edge_labels'].append(key)
  401. else:
  402. label_names['edge_attrs'].append(key)
  403. break
  404. return g, label_names
  405. def load_gxl(self, filename): # @todo: directed graphs.
  406. from os.path import basename
  407. import networkx as nx
  408. import xml.etree.ElementTree as ET
  409. tree = ET.parse(filename)
  410. root = tree.getroot()
  411. index = 0
  412. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  413. dic = {} # used to retrieve incident nodes of edges
  414. for node in root.iter('node'):
  415. dic[node.attrib['id']] = index
  416. labels = {}
  417. for attr in node.iter('attr'):
  418. labels[attr.attrib['name']] = attr[0].text
  419. g.add_node(index, **labels)
  420. index += 1
  421. for edge in root.iter('edge'):
  422. labels = {}
  423. for attr in edge.iter('attr'):
  424. labels[attr.attrib['name']] = attr[0].text
  425. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  426. # get label names.
  427. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  428. for node in root.iter('node'):
  429. for attr in node.iter('attr'):
  430. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  431. label_names['node_labels'].append(attr.attrib['name'])
  432. else:
  433. label_names['node_attrs'].append(attr.attrib['name'])
  434. break
  435. for edge in root.iter('edge'):
  436. for attr in edge.iter('attr'):
  437. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  438. label_names['edge_labels'].append(attr.attrib['name'])
  439. else:
  440. label_names['edge_attrs'].append(attr.attrib['name'])
  441. break
  442. return g, label_names
  443. def _append_label_names(self, label_names, new_names):
  444. for key, val in label_names.items():
  445. label_names[key] += [name for name in new_names[key] if name not in val]
  446. @property
  447. def data(self):
  448. return self._graphs, self._targets, self._label_names
  449. @property
  450. def graphs(self):
  451. return self._graphs
  452. @property
  453. def targets(self):
  454. return self._targets
  455. @property
  456. def label_names(self):
  457. return self._label_names
  458. class DataSaver():
  459. def __init__(self, graphs, targets=None, filename='gfile', gformat='gxl', group=None, **kwargs):
  460. """Save list of graphs.
  461. """
  462. import os
  463. dirname_ds = os.path.dirname(filename)
  464. if dirname_ds != '':
  465. dirname_ds += '/'
  466. os.makedirs(dirname_ds, exist_ok=True)
  467. if 'graph_dir' in kwargs:
  468. graph_dir = kwargs['graph_dir'] + '/'
  469. os.makedirs(graph_dir, exist_ok=True)
  470. del kwargs['graph_dir']
  471. else:
  472. graph_dir = dirname_ds
  473. if group == 'xml' and gformat == 'gxl':
  474. with open(filename + '.xml', 'w') as fgroup:
  475. fgroup.write("<?xml version=\"1.0\"?>")
  476. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  477. fgroup.write("\n<GraphCollection>")
  478. for idx, g in enumerate(graphs):
  479. fname_tmp = "graph" + str(idx) + ".gxl"
  480. self.save_gxl(g, graph_dir + fname_tmp, **kwargs)
  481. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(targets[idx]) + "\"/>")
  482. fgroup.write("\n</GraphCollection>")
  483. fgroup.close()
  484. def save_gxl(self, graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  485. if method == 'default':
  486. gxl_file = open(filename, 'w')
  487. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  488. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  489. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  490. if 'name' in graph.graph:
  491. name = str(graph.graph['name'])
  492. else:
  493. name = 'dummy'
  494. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  495. for v, attrs in graph.nodes(data=True):
  496. gxl_file.write("<node id=\"_" + str(v) + "\">")
  497. for l_name in node_labels:
  498. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  499. str(attrs[l_name]) + "</int></attr>")
  500. for a_name in node_attrs:
  501. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  502. str(attrs[a_name]) + "</float></attr>")
  503. gxl_file.write("</node>\n")
  504. for v1, v2, attrs in graph.edges(data=True):
  505. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  506. for l_name in edge_labels:
  507. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  508. str(attrs[l_name]) + "</int></attr>")
  509. for a_name in edge_attrs:
  510. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  511. str(attrs[a_name]) + "</float></attr>")
  512. gxl_file.write("</edge>\n")
  513. gxl_file.write("</graph>\n")
  514. gxl_file.write("</gxl>")
  515. gxl_file.close()
  516. elif method == 'benoit':
  517. import xml.etree.ElementTree as ET
  518. root_node = ET.Element('gxl')
  519. attr = dict()
  520. attr['id'] = str(graph.graph['name'])
  521. attr['edgeids'] = 'true'
  522. attr['edgemode'] = 'undirected'
  523. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  524. for v in graph:
  525. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  526. for attr in graph.nodes[v].keys():
  527. cur_attr = ET.SubElement(
  528. current_node, 'attr', attrib={'name': attr})
  529. cur_value = ET.SubElement(cur_attr,
  530. graph.nodes[v][attr].__class__.__name__)
  531. cur_value.text = graph.nodes[v][attr]
  532. for v1 in graph:
  533. for v2 in graph[v1]:
  534. if (v1 < v2): # Non oriented graphs
  535. cur_edge = ET.SubElement(
  536. graph_node,
  537. 'edge',
  538. attrib={
  539. 'from': str(v1),
  540. 'to': str(v2)
  541. })
  542. for attr in graph[v1][v2].keys():
  543. cur_attr = ET.SubElement(
  544. cur_edge, 'attr', attrib={'name': attr})
  545. cur_value = ET.SubElement(
  546. cur_attr, graph[v1][v2][attr].__class__.__name__)
  547. cur_value.text = str(graph[v1][v2][attr])
  548. tree = ET.ElementTree(root_node)
  549. tree.write(filename)
  550. elif method == 'gedlib':
  551. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  552. # pass
  553. gxl_file = open(filename, 'w')
  554. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  555. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  556. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  557. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  558. for v, attrs in graph.nodes(data=True):
  559. gxl_file.write("<node id=\"_" + str(v) + "\">")
  560. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  561. gxl_file.write("</node>\n")
  562. for v1, v2, attrs in graph.edges(data=True):
  563. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  564. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  565. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  566. gxl_file.write("</edge>\n")
  567. gxl_file.write("</graph>\n")
  568. gxl_file.write("</gxl>")
  569. gxl_file.close()
  570. elif method == 'gedlib-letter':
  571. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  572. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  573. gxl_file = open(filename, 'w')
  574. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  575. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  576. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  577. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  578. for v, attrs in graph.nodes(data=True):
  579. gxl_file.write("<node id=\"_" + str(v) + "\">")
  580. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  581. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  582. gxl_file.write("</node>\n")
  583. for v1, v2, attrs in graph.edges(data=True):
  584. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  585. gxl_file.write("</graph>\n")
  586. gxl_file.write("</gxl>")
  587. gxl_file.close()
  588. # def loadSDF(filename):
  589. # """load data from structured data file (.sdf file).
  590. # Notes
  591. # ------
  592. # A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  593. # Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  594. # """
  595. # import networkx as nx
  596. # from os.path import basename
  597. # from tqdm import tqdm
  598. # import sys
  599. # data = []
  600. # with open(filename) as f:
  601. # content = f.read().splitlines()
  602. # index = 0
  603. # pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  604. # while index < len(content):
  605. # index_old = index
  606. # g = nx.Graph(name=content[index].strip()) # set name of the graph
  607. # tmp = content[index + 3]
  608. # nb_nodes = int(tmp[:3]) # number of the nodes
  609. # nb_edges = int(tmp[3:6]) # number of the edges
  610. # for i in range(0, nb_nodes):
  611. # tmp = content[i + index + 4]
  612. # g.add_node(i, atom=tmp[31:34].strip())
  613. # for i in range(0, nb_edges):
  614. # tmp = content[i + index + g.number_of_nodes() + 4]
  615. # tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  616. # g.add_edge(
  617. # int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  618. # data.append(g)
  619. # index += 4 + g.number_of_nodes() + g.number_of_edges()
  620. # while content[index].strip() != '$$$$': # seperator
  621. # index += 1
  622. # index += 1
  623. # pbar.update(index - index_old)
  624. # pbar.update(1)
  625. # pbar.close()
  626. # return data
  627. # def load_from_cxl(filename):
  628. # import xml.etree.ElementTree as ET
  629. #
  630. # dirname_dataset = dirname(filename)
  631. # tree = ET.parse(filename)
  632. # root = tree.getroot()
  633. # data = []
  634. # y = []
  635. # for graph in root.iter('graph'):
  636. # mol_filename = graph.attrib['file']
  637. # mol_class = graph.attrib['class']
  638. # data.append(load_gxl(dirname_dataset + '/' + mol_filename))
  639. # y.append(mol_class)
  640. if __name__ == '__main__':
  641. # ### Load dataset from .ds file.
  642. # # .ct files.
  643. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  644. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  645. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  646. # ds_file = '../../datasets/Acyclic/dataset_bps.ds' # node symb
  647. # Gn, targets, label_names = load_dataset(ds_file)
  648. # ds_file = '../../datasets/MAO/dataset.ds' # node/edge symb
  649. # Gn, targets, label_names = load_dataset(ds_file)
  650. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  651. ## Gn, y = loadDataset(ds['dataset'])
  652. # print(Gn[1].graph)
  653. # print(Gn[1].nodes(data=True))
  654. # print(Gn[1].edges(data=True))
  655. # print(targets[1])
  656. # # .gxl file.
  657. # ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
  658. # Gn, y, label_names = load_dataset(ds_file)
  659. # print(Gn[1].graph)
  660. # print(Gn[1].nodes(data=True))
  661. # print(Gn[1].edges(data=True))
  662. # print(y[1])
  663. # .mat file.
  664. ds_file = '../../datasets/MUTAG_mat/MUTAG.mat'
  665. order = [0, 0, 3, 1, 2]
  666. gloader = DataLoader(ds_file, order=order)
  667. Gn, targets, label_names = gloader.data
  668. print(Gn[1].graph)
  669. print(Gn[1].nodes(data=True))
  670. print(Gn[1].edges(data=True))
  671. print(targets[1])
  672. # ### Convert graph from one format to another.
  673. # # .gxl file.
  674. # import networkx as nx
  675. # ds = {'name': 'monoterpenoides',
  676. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  677. # Gn, y = loadDataset(ds['dataset'])
  678. # y = [int(i) for i in y]
  679. # print(Gn[1].nodes(data=True))
  680. # print(Gn[1].edges(data=True))
  681. # print(y[1])
  682. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  683. # Gn_new = []
  684. # for G in Gn:
  685. # G_new = nx.Graph()
  686. # for nd, attrs in G.nodes(data=True):
  687. # G_new.add_node(str(nd), chem=attrs['atom'])
  688. # for nd1, nd2, attrs in G.edges(data=True):
  689. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  690. ## G_new.add_edge(str(nd1), str(nd2))
  691. # Gn_new.append(G_new)
  692. # print(Gn_new[1].nodes(data=True))
  693. # print(Gn_new[1].edges(data=True))
  694. # print(Gn_new[1])
  695. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  696. # xparams = {'method': 'gedlib'}
  697. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  698. # save dataset.
  699. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  700. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  701. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  702. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  703. # test - new way to add labels and attributes.
  704. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  705. # filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
  706. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  707. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  708. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  709. # Gn, targets, label_names = load_dataset(filename)
  710. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.