You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

treeletKernel.py 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. import sys
  2. import pathlib
  3. sys.path.insert(0, "../")
  4. import time
  5. from collections import Counter
  6. from itertools import chain
  7. import networkx as nx
  8. import numpy as np
  9. def treeletkernel(*args, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  10. """Calculate treelet graph kernels between graphs.
  11. Parameters
  12. ----------
  13. Gn : List of NetworkX graph
  14. List of graphs between which the kernels are calculated.
  15. /
  16. G1, G2 : NetworkX graphs
  17. 2 graphs between which the kernel is calculated.
  18. node_label : string
  19. node attribute used as label. The default node label is atom.
  20. edge_label : string
  21. edge attribute used as label. The default edge label is bond_type.
  22. labeled : boolean
  23. Whether the graphs are labeled. The default is True.
  24. Return
  25. ------
  26. Kmatrix/kernel : Numpy matrix/float
  27. Kernel matrix, each element of which is the treelet kernel between 2 praphs. / Treelet kernel between 2 graphs.
  28. """
  29. if len(args) == 1: # for a list of graphs
  30. Gn = args[0]
  31. Kmatrix = np.zeros((len(Gn), len(Gn)))
  32. start_time = time.time()
  33. for i in range(0, len(Gn)):
  34. for j in range(i, len(Gn)):
  35. Kmatrix[i][j] = _treeletkernel_do(Gn[i], Gn[j], node_label = node_label, edge_label = edge_label, labeled = labeled)
  36. Kmatrix[j][i] = Kmatrix[i][j]
  37. run_time = time.time() - start_time
  38. print("\n --- treelet kernel matrix of size %d built in %s seconds ---" % (len(Gn), run_time))
  39. return Kmatrix, run_time
  40. else: # for only 2 graphs
  41. start_time = time.time()
  42. kernel = _treeletkernel_do(args[0], args[1], node_label = node_label, edge_label = edge_label, labeled = labeled)
  43. run_time = time.time() - start_time
  44. print("\n --- treelet kernel built in %s seconds ---" % (run_time))
  45. return kernel, run_time
  46. def _treeletkernel_do(G1, G2, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  47. """Calculate treelet graph kernel between 2 graphs.
  48. Parameters
  49. ----------
  50. G1, G2 : NetworkX graphs
  51. 2 graphs between which the kernel is calculated.
  52. node_label : string
  53. node attribute used as label. The default node label is atom.
  54. edge_label : string
  55. edge attribute used as label. The default edge label is bond_type.
  56. labeled : boolean
  57. Whether the graphs are labeled. The default is True.
  58. Return
  59. ------
  60. kernel : float
  61. Treelet Kernel between 2 graphs.
  62. """
  63. canonkey1 = get_canonkeys(G1, node_label = node_label, edge_label = edge_label, labeled = labeled)
  64. canonkey2 = get_canonkeys(G2, node_label = node_label, edge_label = edge_label, labeled = labeled)
  65. keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
  66. vector1 = np.matrix([ (canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys ])
  67. vector2 = np.matrix([ (canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys ])
  68. kernel = np.sum(np.exp(- np.square(vector1 - vector2) / 2))
  69. return kernel
  70. def get_canonkeys(G, node_label = 'atom', edge_label = 'bond_type', labeled = True):
  71. """Generate canonical keys of all treelets in a graph.
  72. Parameters
  73. ----------
  74. G : NetworkX graphs
  75. The graph in which keys are generated.
  76. node_label : string
  77. node attribute used as label. The default node label is atom.
  78. edge_label : string
  79. edge attribute used as label. The default edge label is bond_type.
  80. labeled : boolean
  81. Whether the graphs are labeled. The default is True.
  82. Return
  83. ------
  84. canonkey/canonkey_l : dict
  85. For unlabeled graphs, canonkey is a dictionary which records amount of every tree pattern. For labeled graphs, canonkey_l is one which keeps track of amount of every treelet.
  86. References
  87. ----------
  88. [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
  89. """
  90. patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
  91. canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
  92. ### structural analysis ###
  93. ### In this section, a list of patterns is generated for each graphlet, where every pattern is represented by nodes ordered by
  94. ### Morgan's extended labeling.
  95. # linear patterns
  96. patterns['0'] = G.nodes()
  97. canonkey['0'] = nx.number_of_nodes(G)
  98. for i in range(1, 6):
  99. patterns[str(i)] = find_all_paths(G, i)
  100. canonkey[str(i)] = len(patterns[str(i)])
  101. # n-star patterns
  102. patterns['3star'] = [ [node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3 ]
  103. patterns['4star'] = [ [node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4 ]
  104. patterns['5star'] = [ [node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5 ]
  105. # n-star patterns
  106. canonkey['6'] = len(patterns['3star'])
  107. canonkey['8'] = len(patterns['4star'])
  108. canonkey['d'] = len(patterns['5star'])
  109. # pattern 7
  110. patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
  111. for pattern in patterns['3star']:
  112. for i in range(1, len(pattern)): # for each neighbor of node 0
  113. if G.degree(pattern[i]) >= 2:
  114. pattern_t = pattern[:]
  115. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] # set the node with degree >= 2 as the 4th node
  116. for neighborx in G[pattern[i]]:
  117. if neighborx != pattern[0]:
  118. new_pattern = pattern_t + [ neighborx ]
  119. patterns['7'].append(new_pattern)
  120. canonkey['7'] = len(patterns['7'])
  121. # pattern 11
  122. patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
  123. for pattern in patterns['4star']:
  124. for i in range(1, len(pattern)):
  125. if G.degree(pattern[i]) >= 2:
  126. pattern_t = pattern[:]
  127. pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
  128. for neighborx in G[pattern[i]]:
  129. if neighborx != pattern[0]:
  130. new_pattern = pattern_t + [ neighborx ]
  131. patterns['11'].append(new_pattern)
  132. canonkey['b'] = len(patterns['11'])
  133. # pattern 12
  134. patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
  135. rootlist = [] # a list of root nodes, whose extended labels are 3
  136. for pattern in patterns['3star']:
  137. if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
  138. rootlist.append(pattern[0])
  139. for i in range(1, len(pattern)):
  140. if G.degree(pattern[i]) >= 3:
  141. rootlist.append(pattern[i])
  142. pattern_t = pattern[:]
  143. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  144. for neighborx1 in G[pattern[i]]:
  145. if neighborx1 != pattern[0]:
  146. for neighborx2 in G[pattern[i]]:
  147. if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
  148. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  149. # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
  150. patterns['12'].append(new_pattern)
  151. canonkey['c'] = int(len(patterns['12']) / 2)
  152. # pattern 9
  153. patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
  154. for pattern in patterns['3star']:
  155. for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
  156. for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]:
  157. pattern_t = pattern[:]
  158. # move nodes with extended labels 4 to specific position to correspond to their children
  159. pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
  160. pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
  161. for neighborx1 in G[pairs[0]]:
  162. if neighborx1 != pattern[0]:
  163. for neighborx2 in G[pairs[1]]:
  164. if neighborx2 != pattern[0]:
  165. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  166. patterns['9'].append(new_pattern)
  167. canonkey['9'] = len(patterns['9'])
  168. # pattern 10
  169. patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
  170. for pattern in patterns['3star']:
  171. for i in range(1, len(pattern)):
  172. if G.degree(pattern[i]) >= 2:
  173. for neighborx in G[pattern[i]]:
  174. if neighborx != pattern[0] and G.degree(neighborx) >= 2:
  175. pattern_t = pattern[:]
  176. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  177. new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
  178. patterns['10'].extend(new_patterns)
  179. canonkey['a'] = len(patterns['10'])
  180. ### labeling information ###
  181. ### In this section, a list of canonical keys is generated for every pattern obtained in the structural analysis
  182. ### section above, which is a string corresponding to a unique treelet. A dictionary is built to keep track of
  183. ### the amount of every treelet.
  184. if labeled == True:
  185. canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
  186. # linear patterns
  187. canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values()))
  188. for key in canonkey_t:
  189. canonkey_l['0' + key] = canonkey_t[key]
  190. for i in range(1, 6):
  191. treelet = []
  192. for pattern in patterns[str(i)]:
  193. canonlist = list(chain.from_iterable((G.node[node][node_label], \
  194. G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1])))
  195. canonlist.append(G.node[pattern[-1]][node_label])
  196. canonkey_t = ''.join(canonlist)
  197. canonkey_t = canonkey_t if canonkey_t < canonkey_t[::-1] else canonkey_t[::-1]
  198. treelet.append(str(i) + canonkey_t)
  199. canonkey_l.update(Counter(treelet))
  200. # n-star patterns
  201. for i in range(3, 6):
  202. treelet = []
  203. for pattern in patterns[str(i) + 'star']:
  204. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:] ]
  205. canonlist.sort()
  206. canonkey_t = ('d' if i == 5 else str(i * 2)) + G.node[pattern[0]][node_label] + ''.join(canonlist)
  207. treelet.append(canonkey_t)
  208. canonkey_l.update(Counter(treelet))
  209. # pattern 7
  210. treelet = []
  211. for pattern in patterns['7']:
  212. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  213. canonlist.sort()
  214. canonkey_t = '7' + G.node[pattern[0]][node_label] + ''.join(canonlist) \
  215. + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \
  216. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label]
  217. treelet.append(canonkey_t)
  218. canonkey_l.update(Counter(treelet))
  219. # pattern 11
  220. treelet = []
  221. for pattern in patterns['11']:
  222. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:4] ]
  223. canonlist.sort()
  224. canonkey_t = 'b' + G.node[pattern[0]][node_label] + ''.join(canonlist) \
  225. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[0]][edge_label] \
  226. + G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label]
  227. treelet.append(canonkey_t)
  228. canonkey_l.update(Counter(treelet))
  229. # pattern 10
  230. treelet = []
  231. for pattern in patterns['10']:
  232. canonkey4 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label]
  233. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  234. canonlist.sort()
  235. canonkey0 = ''.join(canonlist)
  236. canonkey_t = 'a' + G.node[pattern[3]][node_label] \
  237. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] \
  238. + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \
  239. + canonkey4 + canonkey0
  240. treelet.append(canonkey_t)
  241. canonkey_l.update(Counter(treelet))
  242. # pattern 12
  243. treelet = []
  244. for pattern in patterns['12']:
  245. canonlist0 = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  246. canonlist0.sort()
  247. canonlist3 = [ G.node[leaf][node_label] + G[leaf][pattern[3]][edge_label] for leaf in pattern[4:6] ]
  248. canonlist3.sort()
  249. # 2 possible key can be generated from 2 nodes with extended label 3, select the one with lower lexicographic order.
  250. canonkey_t1 = 'c' + G.node[pattern[0]][node_label] \
  251. + ''.join(canonlist0) \
  252. + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \
  253. + ''.join(canonlist3)
  254. canonkey_t2 = 'c' + G.node[pattern[3]][node_label] \
  255. + ''.join(canonlist3) \
  256. + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \
  257. + ''.join(canonlist0)
  258. treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
  259. canonkey_l.update(Counter(treelet))
  260. # pattern 9
  261. treelet = []
  262. for pattern in patterns['9']:
  263. canonkey2 = G.node[pattern[4]][node_label] + G[pattern[4]][pattern[2]][edge_label]
  264. canonkey3 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[3]][edge_label]
  265. prekey2 = G.node[pattern[2]][node_label] + G[pattern[2]][pattern[0]][edge_label]
  266. prekey3 = G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label]
  267. if prekey2 + canonkey2 < prekey3 + canonkey3:
  268. canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \
  269. + prekey2 + prekey3 + canonkey2 + canonkey3
  270. else:
  271. canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \
  272. + prekey3 + prekey2 + canonkey3 + canonkey2
  273. treelet.append('9' + G.node[pattern[0]][node_label] + canonkey_t)
  274. canonkey_l.update(Counter(treelet))
  275. return canonkey_l
  276. return canonkey
  277. def find_paths(G, source_node, length):
  278. """Find all paths with a certain length those start from a source node. A recursive depth first search is applied.
  279. Parameters
  280. ----------
  281. G : NetworkX graphs
  282. The graph in which paths are searched.
  283. source_node : integer
  284. The number of the node from where all paths start.
  285. length : integer
  286. The length of paths.
  287. Return
  288. ------
  289. path : list of list
  290. List of paths retrieved, where each path is represented by a list of nodes.
  291. """
  292. if length == 0:
  293. return [[source_node]]
  294. path = [ [source_node] + path for neighbor in G[source_node] \
  295. for path in find_paths(G, neighbor, length - 1) if source_node not in path ]
  296. return path
  297. def find_all_paths(G, length):
  298. """Find all paths with a certain length in a graph. A recursive depth first search is applied.
  299. Parameters
  300. ----------
  301. G : NetworkX graphs
  302. The graph in which paths are searched.
  303. length : integer
  304. The length of paths.
  305. Return
  306. ------
  307. path : list of list
  308. List of paths retrieved, where each path is represented by a list of nodes.
  309. """
  310. all_paths = []
  311. for node in G:
  312. all_paths.extend(find_paths(G, node, length))
  313. all_paths_r = [ path[::-1] for path in all_paths ]
  314. # For each path, two presentation are retrieved from its two extremities. Remove one of them.
  315. for idx, path in enumerate(all_paths[:-1]):
  316. for path2 in all_paths_r[idx+1::]:
  317. if path == path2:
  318. all_paths[idx] = []
  319. break
  320. return list(filter(lambda a: a != [], all_paths))

A Python package for graph kernels, graph edit distances and graph pre-image problem.