You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

median_graph_estimator.py 60 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Mon Mar 16 18:04:55 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. from gklearn.ged.env import AlgorithmState, NodeMap
  9. from gklearn.ged.util import misc
  10. from gklearn.utils import Timer
  11. import time
  12. from tqdm import tqdm
  13. import sys
  14. import networkx as nx
  15. import multiprocessing
  16. from multiprocessing import Pool
  17. from functools import partial
  18. class MedianGraphEstimator(object): # @todo: differ dummy_node from undifined node?
  19. def __init__(self, ged_env, constant_node_costs):
  20. """Constructor.
  21. Parameters
  22. ----------
  23. ged_env : gklearn.gedlib.gedlibpy.GEDEnv
  24. Initialized GED environment. The edit costs must be set by the user.
  25. constant_node_costs : Boolean
  26. Set to True if the node relabeling costs are constant.
  27. """
  28. self.__ged_env = ged_env
  29. self.__init_method = 'BRANCH_FAST'
  30. self.__init_options = ''
  31. self.__descent_method = 'BRANCH_FAST'
  32. self.__descent_options = ''
  33. self.__refine_method = 'IPFP'
  34. self.__refine_options = ''
  35. self.__constant_node_costs = constant_node_costs
  36. self.__labeled_nodes = (ged_env.get_num_node_labels() > 1)
  37. self.__node_del_cost = ged_env.get_node_del_cost(ged_env.get_node_label(1))
  38. self.__node_ins_cost = ged_env.get_node_ins_cost(ged_env.get_node_label(1))
  39. self.__labeled_edges = (ged_env.get_num_edge_labels() > 1)
  40. self.__edge_del_cost = ged_env.get_edge_del_cost(ged_env.get_edge_label(1))
  41. self.__edge_ins_cost = ged_env.get_edge_ins_cost(ged_env.get_edge_label(1))
  42. self.__init_type = 'RANDOM'
  43. self.__num_random_inits = 10
  44. self.__desired_num_random_inits = 10
  45. self.__use_real_randomness = True
  46. self.__seed = 0
  47. self.__parallel = True
  48. self.__update_order = True
  49. self.__refine = True
  50. self.__time_limit_in_sec = 0
  51. self.__epsilon = 0.0001
  52. self.__max_itrs = 100
  53. self.__max_itrs_without_update = 3
  54. self.__num_inits_increase_order = 10
  55. self.__init_type_increase_order = 'K-MEANS++'
  56. self.__max_itrs_increase_order = 10
  57. self.__print_to_stdout = 2
  58. self.__median_id = np.inf # @todo: check
  59. self.__node_maps_from_median = {}
  60. self.__sum_of_distances = 0
  61. self.__best_init_sum_of_distances = np.inf
  62. self.__converged_sum_of_distances = np.inf
  63. self.__runtime = None
  64. self.__runtime_initialized = None
  65. self.__runtime_converged = None
  66. self.__itrs = [] # @todo: check: {} ?
  67. self.__num_decrease_order = 0
  68. self.__num_increase_order = 0
  69. self.__num_converged_descents = 0
  70. self.__state = AlgorithmState.TERMINATED
  71. self.__label_names = {}
  72. if ged_env is None:
  73. raise Exception('The GED environment pointer passed to the constructor of MedianGraphEstimator is null.')
  74. elif not ged_env.is_initialized():
  75. raise Exception('The GED environment is uninitialized. Call gedlibpy.GEDEnv.init() before passing it to the constructor of MedianGraphEstimator.')
  76. def set_options(self, options):
  77. """Sets the options of the estimator.
  78. Parameters
  79. ----------
  80. options : string
  81. String that specifies with which options to run the estimator.
  82. """
  83. self.__set_default_options()
  84. options_map = misc.options_string_to_options_map(options)
  85. for opt_name, opt_val in options_map.items():
  86. if opt_name == 'init-type':
  87. self.__init_type = opt_val
  88. if opt_val != 'MEDOID' and opt_val != 'RANDOM' and opt_val != 'MIN' and opt_val != 'MAX' and opt_val != 'MEAN':
  89. raise Exception('Invalid argument ' + opt_val + ' for option init-type. Usage: options = "[--init-type RANDOM|MEDOID|EMPTY|MIN|MAX|MEAN] [...]"')
  90. elif opt_name == 'random-inits':
  91. try:
  92. self.__num_random_inits = int(opt_val)
  93. self.__desired_num_random_inits = self.__num_random_inits
  94. except:
  95. raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"')
  96. if self.__num_random_inits <= 0:
  97. raise Exception('Invalid argument "' + opt_val + '" for option random-inits. Usage: options = "[--random-inits <convertible to int greater 0>]"')
  98. elif opt_name == 'randomness':
  99. if opt_val == 'PSEUDO':
  100. self.__use_real_randomness = False
  101. elif opt_val == 'REAL':
  102. self.__use_real_randomness = True
  103. else:
  104. raise Exception('Invalid argument "' + opt_val + '" for option randomness. Usage: options = "[--randomness REAL|PSEUDO] [...]"')
  105. elif opt_name == 'stdout':
  106. if opt_val == '0':
  107. self.__print_to_stdout = 0
  108. elif opt_val == '1':
  109. self.__print_to_stdout = 1
  110. elif opt_val == '2':
  111. self.__print_to_stdout = 2
  112. else:
  113. raise Exception('Invalid argument "' + opt_val + '" for option stdout. Usage: options = "[--stdout 0|1|2] [...]"')
  114. elif opt_name == 'parallel':
  115. if opt_val == 'TRUE':
  116. self.__parallel = True
  117. elif opt_val == 'FALSE':
  118. self.__parallel = False
  119. else:
  120. raise Exception('Invalid argument "' + opt_val + '" for option parallel. Usage: options = "[--parallel TRUE|FALSE] [...]"')
  121. elif opt_name == 'update-order':
  122. if opt_val == 'TRUE':
  123. self.__update_order = True
  124. elif opt_val == 'FALSE':
  125. self.__update_order = False
  126. else:
  127. raise Exception('Invalid argument "' + opt_val + '" for option update-order. Usage: options = "[--update-order TRUE|FALSE] [...]"')
  128. elif opt_name == 'refine':
  129. if opt_val == 'TRUE':
  130. self.__refine = True
  131. elif opt_val == 'FALSE':
  132. self.__refine = False
  133. else:
  134. raise Exception('Invalid argument "' + opt_val + '" for option refine. Usage: options = "[--refine TRUE|FALSE] [...]"')
  135. elif opt_name == 'time-limit':
  136. try:
  137. self.__time_limit_in_sec = float(opt_val)
  138. except:
  139. raise Exception('Invalid argument "' + opt_val + '" for option time-limit. Usage: options = "[--time-limit <convertible to double>] [...]')
  140. elif opt_name == 'max-itrs':
  141. try:
  142. self.__max_itrs = int(opt_val)
  143. except:
  144. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs. Usage: options = "[--max-itrs <convertible to int>] [...]')
  145. elif opt_name == 'max-itrs-without-update':
  146. try:
  147. self.__max_itrs_without_update = int(opt_val)
  148. except:
  149. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-without-update. Usage: options = "[--max-itrs-without-update <convertible to int>] [...]')
  150. elif opt_name == 'seed':
  151. try:
  152. self.__seed = int(opt_val)
  153. except:
  154. raise Exception('Invalid argument "' + opt_val + '" for option seed. Usage: options = "[--seed <convertible to int greater equal 0>] [...]')
  155. elif opt_name == 'epsilon':
  156. try:
  157. self.__epsilon = float(opt_val)
  158. except:
  159. raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]')
  160. if self.__epsilon <= 0:
  161. raise Exception('Invalid argument "' + opt_val + '" for option epsilon. Usage: options = "[--epsilon <convertible to double greater 0>] [...]')
  162. elif opt_name == 'inits-increase-order':
  163. try:
  164. self.__num_inits_increase_order = int(opt_val)
  165. except:
  166. raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"')
  167. if self.__num_inits_increase_order <= 0:
  168. raise Exception('Invalid argument "' + opt_val + '" for option inits-increase-order. Usage: options = "[--inits-increase-order <convertible to int greater 0>]"')
  169. elif opt_name == 'init-type-increase-order':
  170. self.__init_type_increase_order = opt_val
  171. if opt_val != 'CLUSTERS' and opt_val != 'K-MEANS++':
  172. raise Exception('Invalid argument ' + opt_val + ' for option init-type-increase-order. Usage: options = "[--init-type-increase-order CLUSTERS|K-MEANS++] [...]"')
  173. elif opt_name == 'max-itrs-increase-order':
  174. try:
  175. self.__max_itrs_increase_order = int(opt_val)
  176. except:
  177. raise Exception('Invalid argument "' + opt_val + '" for option max-itrs-increase-order. Usage: options = "[--max-itrs-increase-order <convertible to int>] [...]')
  178. else:
  179. valid_options = '[--init-type <arg>] [--random-inits <arg>] [--randomness <arg>] [--seed <arg>] [--stdout <arg>] '
  180. valid_options += '[--time-limit <arg>] [--max-itrs <arg>] [--epsilon <arg>] '
  181. valid_options += '[--inits-increase-order <arg>] [--init-type-increase-order <arg>] [--max-itrs-increase-order <arg>]'
  182. raise Exception('Invalid option "' + opt_name + '". Usage: options = "' + valid_options + '"')
  183. def set_init_method(self, init_method, init_options=''):
  184. """Selects method to be used for computing the initial medoid graph.
  185. Parameters
  186. ----------
  187. init_method : string
  188. The selected method. Default: ged::Options::GEDMethod::BRANCH_UNIFORM.
  189. init_options : string
  190. The options for the selected method. Default: "".
  191. Notes
  192. -----
  193. Has no effect unless "--init-type MEDOID" is passed to set_options().
  194. """
  195. self.__init_method = init_method;
  196. self.__init_options = init_options;
  197. def set_descent_method(self, descent_method, descent_options=''):
  198. """Selects method to be used for block gradient descent..
  199. Parameters
  200. ----------
  201. descent_method : string
  202. The selected method. Default: ged::Options::GEDMethod::BRANCH_FAST.
  203. descent_options : string
  204. The options for the selected method. Default: "".
  205. Notes
  206. -----
  207. Has no effect unless "--init-type MEDOID" is passed to set_options().
  208. """
  209. self.__descent_method = descent_method;
  210. self.__descent_options = descent_options;
  211. def set_refine_method(self, refine_method, refine_options):
  212. """Selects method to be used for improving the sum of distances and the node maps for the converged median.
  213. Parameters
  214. ----------
  215. refine_method : string
  216. The selected method. Default: "IPFP".
  217. refine_options : string
  218. The options for the selected method. Default: "".
  219. Notes
  220. -----
  221. Has no effect if "--refine FALSE" is passed to set_options().
  222. """
  223. self.__refine_method = refine_method
  224. self.__refine_options = refine_options
  225. def run(self, graph_ids, set_median_id, gen_median_id):
  226. """Computes a generalized median graph.
  227. Parameters
  228. ----------
  229. graph_ids : list[integer]
  230. The IDs of the graphs for which the median should be computed. Must have been added to the environment passed to the constructor.
  231. set_median_id : integer
  232. The ID of the computed set-median. A dummy graph with this ID must have been added to the environment passed to the constructor. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph().
  233. gen_median_id : integer
  234. The ID of the computed generalized median. Upon termination, the computed median can be obtained via gklearn.gedlib.gedlibpy.GEDEnv.get_graph().
  235. """
  236. # Sanity checks.
  237. if len(graph_ids) == 0:
  238. raise Exception('Empty vector of graph IDs, unable to compute median.')
  239. all_graphs_empty = True
  240. for graph_id in graph_ids:
  241. if self.__ged_env.get_graph_num_nodes(graph_id) > 0:
  242. all_graphs_empty = False
  243. break
  244. if all_graphs_empty:
  245. raise Exception('All graphs in the collection are empty.')
  246. # Start timer and record start time.
  247. start = time.time()
  248. timer = Timer(self.__time_limit_in_sec)
  249. self.__median_id = gen_median_id
  250. self.__state = AlgorithmState.TERMINATED
  251. # Get NetworkX graph representations of the input graphs.
  252. graphs = {}
  253. for graph_id in graph_ids:
  254. # @todo: get_nx_graph() function may need to be modified according to the coming code.
  255. graphs[graph_id] = self.__ged_env.get_nx_graph(graph_id, True, True, False)
  256. # print(self.__ged_env.get_graph_internal_id(0))
  257. # print(graphs[0].graph)
  258. # print(graphs[0].nodes(data=True))
  259. # print(graphs[0].edges(data=True))
  260. # print(nx.adjacency_matrix(graphs[0]))
  261. # Construct initial medians.
  262. medians = []
  263. self.__construct_initial_medians(graph_ids, timer, medians)
  264. end_init = time.time()
  265. self.__runtime_initialized = end_init - start
  266. # print(medians[0].graph)
  267. # print(medians[0].nodes(data=True))
  268. # print(medians[0].edges(data=True))
  269. # print(nx.adjacency_matrix(medians[0]))
  270. # Reset information about iterations and number of times the median decreases and increases.
  271. self.__itrs = [0] * len(medians)
  272. self.__num_decrease_order = 0
  273. self.__num_increase_order = 0
  274. self.__num_converged_descents = 0
  275. # Initialize the best median.
  276. best_sum_of_distances = np.inf
  277. self.__best_init_sum_of_distances = np.inf
  278. node_maps_from_best_median = {}
  279. # Run block gradient descent from all initial medians.
  280. self.__ged_env.set_method(self.__descent_method, self.__descent_options)
  281. for median_pos in range(0, len(medians)):
  282. # Terminate if the timer has expired and at least one SOD has been computed.
  283. if timer.expired() and median_pos > 0:
  284. break
  285. # Print information about current iteration.
  286. if self.__print_to_stdout == 2:
  287. print('\n===========================================================')
  288. print('Block gradient descent for initial median', str(median_pos + 1), 'of', str(len(medians)), '.')
  289. print('-----------------------------------------------------------')
  290. # Get reference to the median.
  291. median = medians[median_pos]
  292. # Load initial median into the environment.
  293. self.__ged_env.load_nx_graph(median, gen_median_id)
  294. self.__ged_env.init(self.__ged_env.get_init_type())
  295. # Compute node maps and sum of distances for initial median.
  296. # xxx = self.__node_maps_from_median
  297. self.__compute_init_node_maps(graph_ids, gen_median_id)
  298. # yyy = self.__node_maps_from_median
  299. self.__best_init_sum_of_distances = min(self.__best_init_sum_of_distances, self.__sum_of_distances)
  300. self.__ged_env.load_nx_graph(median, set_median_id)
  301. # print(self.__best_init_sum_of_distances)
  302. # Run block gradient descent from initial median.
  303. converged = False
  304. itrs_without_update = 0
  305. while not self.__termination_criterion_met(converged, timer, self.__itrs[median_pos], itrs_without_update):
  306. # Print information about current iteration.
  307. if self.__print_to_stdout == 2:
  308. print('\n===========================================================')
  309. print('Iteration', str(self.__itrs[median_pos] + 1), 'for initial median', str(median_pos + 1), 'of', str(len(medians)), '.')
  310. print('-----------------------------------------------------------')
  311. # Initialize flags that tell us what happened in the iteration.
  312. median_modified = False
  313. node_maps_modified = False
  314. decreased_order = False
  315. increased_order = False
  316. # Update the median.
  317. median_modified = self.__update_median(graphs, median)
  318. if self.__update_order:
  319. if not median_modified or self.__itrs[median_pos] == 0:
  320. decreased_order = self.__decrease_order(graphs, median)
  321. if not decreased_order or self.__itrs[median_pos] == 0:
  322. increased_order = self.__increase_order(graphs, median)
  323. # Update the number of iterations without update of the median.
  324. if median_modified or decreased_order or increased_order:
  325. itrs_without_update = 0
  326. else:
  327. itrs_without_update += 1
  328. # Print information about current iteration.
  329. if self.__print_to_stdout == 2:
  330. print('Loading median to environment: ... ', end='')
  331. # Load the median into the environment.
  332. # @todo: should this function use the original node label?
  333. self.__ged_env.load_nx_graph(median, gen_median_id)
  334. self.__ged_env.init(self.__ged_env.get_init_type())
  335. # Print information about current iteration.
  336. if self.__print_to_stdout == 2:
  337. print('done.')
  338. # Print information about current iteration.
  339. if self.__print_to_stdout == 2:
  340. print('Updating induced costs: ... ', end='')
  341. # Compute induced costs of the old node maps w.r.t. the updated median.
  342. for graph_id in graph_ids:
  343. # print(self.__node_maps_from_median[graph_id].induced_cost())
  344. # xxx = self.__node_maps_from_median[graph_id]
  345. self.__ged_env.compute_induced_cost(gen_median_id, graph_id, self.__node_maps_from_median[graph_id])
  346. # print('---------------------------------------')
  347. # print(self.__node_maps_from_median[graph_id].induced_cost())
  348. # @todo:!!!!!!!!!!!!!!!!!!!!!!!!!!!!This value is a slight different from the c++ program, which might be a bug! Use it very carefully!
  349. # Print information about current iteration.
  350. if self.__print_to_stdout == 2:
  351. print('done.')
  352. # Update the node maps.
  353. node_maps_modified = self.__update_node_maps()
  354. # Update the order of the median if no improvement can be found with the current order.
  355. # Update the sum of distances.
  356. old_sum_of_distances = self.__sum_of_distances
  357. self.__sum_of_distances = 0
  358. for graph_id, node_map in self.__node_maps_from_median.items():
  359. self.__sum_of_distances += node_map.induced_cost()
  360. # print(self.__sum_of_distances)
  361. # Print information about current iteration.
  362. if self.__print_to_stdout == 2:
  363. print('Old local SOD: ', old_sum_of_distances)
  364. print('New local SOD: ', self.__sum_of_distances)
  365. print('Best converged SOD: ', best_sum_of_distances)
  366. print('Modified median: ', median_modified)
  367. print('Modified node maps: ', node_maps_modified)
  368. print('Decreased order: ', decreased_order)
  369. print('Increased order: ', increased_order)
  370. print('===========================================================\n')
  371. converged = not (median_modified or node_maps_modified or decreased_order or increased_order)
  372. self.__itrs[median_pos] += 1
  373. # Update the best median.
  374. if self.__sum_of_distances < best_sum_of_distances:
  375. best_sum_of_distances = self.__sum_of_distances
  376. node_maps_from_best_median = self.__node_maps_from_median.copy() # @todo: this is a shallow copy, not sure if it is enough.
  377. best_median = median
  378. # Update the number of converged descents.
  379. if converged:
  380. self.__num_converged_descents += 1
  381. # Store the best encountered median.
  382. self.__sum_of_distances = best_sum_of_distances
  383. self.__node_maps_from_median = node_maps_from_best_median
  384. self.__ged_env.load_nx_graph(best_median, gen_median_id)
  385. self.__ged_env.init(self.__ged_env.get_init_type())
  386. end_descent = time.time()
  387. self.__runtime_converged = end_descent - start
  388. # Refine the sum of distances and the node maps for the converged median.
  389. self.__converged_sum_of_distances = self.__sum_of_distances
  390. if self.__refine:
  391. self.__improve_sum_of_distances(timer)
  392. # Record end time, set runtime and reset the number of initial medians.
  393. end = time.time()
  394. self.__runtime = end - start
  395. self.__num_random_inits = self.__desired_num_random_inits
  396. # Print global information.
  397. if self.__print_to_stdout != 0:
  398. print('\n===========================================================')
  399. print('Finished computation of generalized median graph.')
  400. print('-----------------------------------------------------------')
  401. print('Best SOD after initialization: ', self.__best_init_sum_of_distances)
  402. print('Converged SOD: ', self.__converged_sum_of_distances)
  403. if self.__refine:
  404. print('Refined SOD: ', self.__sum_of_distances)
  405. print('Overall runtime: ', self.__runtime)
  406. print('Runtime of initialization: ', self.__runtime_initialized)
  407. print('Runtime of block gradient descent: ', self.__runtime_converged - self.__runtime_initialized)
  408. if self.__refine:
  409. print('Runtime of refinement: ', self.__runtime - self.__runtime_converged)
  410. print('Number of initial medians: ', len(medians))
  411. total_itr = 0
  412. num_started_descents = 0
  413. for itr in self.__itrs:
  414. total_itr += itr
  415. if itr > 0:
  416. num_started_descents += 1
  417. print('Size of graph collection: ', len(graph_ids))
  418. print('Number of started descents: ', num_started_descents)
  419. print('Number of converged descents: ', self.__num_converged_descents)
  420. print('Overall number of iterations: ', total_itr)
  421. print('Overall number of times the order decreased: ', self.__num_decrease_order)
  422. print('Overall number of times the order increased: ', self.__num_increase_order)
  423. print('===========================================================\n')
  424. def __improve_sum_of_distances(self, timer): # @todo: go through and test
  425. # Use method selected for refinement phase.
  426. self.__ged_env.set_method(self.__refine_method, self.__refine_options)
  427. # Print information about current iteration.
  428. if self.__print_to_stdout == 2:
  429. progress = tqdm(desc='Improving node maps', total=len(self.__node_maps_from_median), file=sys.stdout)
  430. print('\n===========================================================')
  431. print('Improving node maps and SOD for converged median.')
  432. print('-----------------------------------------------------------')
  433. progress.update(1)
  434. # Improving the node maps.
  435. for graph_id, node_map in self.__node_maps_from_median.items():
  436. if time.expired():
  437. if self.__state == AlgorithmState.TERMINATED:
  438. self.__state = AlgorithmState.CONVERGED
  439. break
  440. self.__ged_env.run_method(self.__gen_median_id, graph_id)
  441. if self.__ged_env.get_upper_bound(self.__gen_median_id, graph_id) < node_map.induced_cost():
  442. self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(self.__gen_median_id, graph_id)
  443. self.__sum_of_distances += self.__node_maps_from_median[graph_id].induced_cost()
  444. # Print information.
  445. if self.__print_to_stdout == 2:
  446. progress.update(1)
  447. self.__sum_of_distances = 0.0
  448. for key, val in self.__node_maps_from_median.items():
  449. self.__sum_of_distances += val.induced_cost()
  450. # Print information.
  451. if self.__print_to_stdout == 2:
  452. print('===========================================================\n')
  453. def __median_available(self):
  454. return self.__median_id != np.inf
  455. def get_state(self):
  456. if not self.__median_available():
  457. raise Exception('No median has been computed. Call run() before calling get_state().')
  458. return self.__state
  459. def get_sum_of_distances(self, state=''):
  460. """Returns the sum of distances.
  461. Parameters
  462. ----------
  463. state : string
  464. The state of the estimator. Can be 'initialized' or 'converged'. Default: ""
  465. Returns
  466. -------
  467. float
  468. The sum of distances (SOD) of the median when the estimator was in the state `state` during the last call to run(). If `state` is not given, the converged SOD (without refinement) or refined SOD (with refinement) is returned.
  469. """
  470. if not self.__median_available():
  471. raise Exception('No median has been computed. Call run() before calling get_sum_of_distances().')
  472. if state == 'initialized':
  473. return self.__best_init_sum_of_distances
  474. if state == 'converged':
  475. return self.__converged_sum_of_distances
  476. return self.__sum_of_distances
  477. def get_runtime(self, state):
  478. if not self.__median_available():
  479. raise Exception('No median has been computed. Call run() before calling get_runtime().')
  480. if state == AlgorithmState.INITIALIZED:
  481. return self.__runtime_initialized
  482. if state == AlgorithmState.CONVERGED:
  483. return self.__runtime_converged
  484. return self.__runtime
  485. def get_num_itrs(self):
  486. if not self.__median_available():
  487. raise Exception('No median has been computed. Call run() before calling get_num_itrs().')
  488. return self.__itrs
  489. def get_num_times_order_decreased(self):
  490. if not self.__median_available():
  491. raise Exception('No median has been computed. Call run() before calling get_num_times_order_decreased().')
  492. return self.__num_decrease_order
  493. def get_num_times_order_increased(self):
  494. if not self.__median_available():
  495. raise Exception('No median has been computed. Call run() before calling get_num_times_order_increased().')
  496. return self.__num_increase_order
  497. def get_num_converged_descents(self):
  498. if not self.__median_available():
  499. raise Exception('No median has been computed. Call run() before calling get_num_converged_descents().')
  500. return self.__num_converged_descents
  501. def get_ged_env(self):
  502. return self.__ged_env
  503. def __set_default_options(self):
  504. self.__init_type = 'RANDOM'
  505. self.__num_random_inits = 10
  506. self.__desired_num_random_inits = 10
  507. self.__use_real_randomness = True
  508. self.__seed = 0
  509. self.__parallel = True
  510. self.__update_order = True
  511. self.__refine = True
  512. self.__time_limit_in_sec = 0
  513. self.__epsilon = 0.0001
  514. self.__max_itrs = 100
  515. self.__max_itrs_without_update = 3
  516. self.__num_inits_increase_order = 10
  517. self.__init_type_increase_order = 'K-MEANS++'
  518. self.__max_itrs_increase_order = 10
  519. self.__print_to_stdout = 2
  520. self.__label_names = {}
  521. def __construct_initial_medians(self, graph_ids, timer, initial_medians):
  522. # Print information about current iteration.
  523. if self.__print_to_stdout == 2:
  524. print('\n===========================================================')
  525. print('Constructing initial median(s).')
  526. print('-----------------------------------------------------------')
  527. # Compute or sample the initial median(s).
  528. initial_medians.clear()
  529. if self.__init_type == 'MEDOID':
  530. self.__compute_medoid(graph_ids, timer, initial_medians)
  531. elif self.__init_type == 'MAX':
  532. pass # @todo
  533. # compute_max_order_graph_(graph_ids, initial_medians)
  534. elif self.__init_type == 'MIN':
  535. pass # @todo
  536. # compute_min_order_graph_(graph_ids, initial_medians)
  537. elif self.__init_type == 'MEAN':
  538. pass # @todo
  539. # compute_mean_order_graph_(graph_ids, initial_medians)
  540. else:
  541. pass # @todo
  542. # sample_initial_medians_(graph_ids, initial_medians)
  543. # Print information about current iteration.
  544. if self.__print_to_stdout == 2:
  545. print('===========================================================')
  546. def __compute_medoid(self, graph_ids, timer, initial_medians):
  547. # Use method selected for initialization phase.
  548. self.__ged_env.set_method(self.__init_method, self.__init_options)
  549. # Compute the medoid.
  550. if self.__parallel:
  551. # @todo: notice when parallel self.__ged_env is not modified.
  552. sum_of_distances_list = [np.inf] * len(graph_ids)
  553. len_itr = len(graph_ids)
  554. itr = zip(graph_ids, range(0, len(graph_ids)))
  555. n_jobs = multiprocessing.cpu_count()
  556. if len_itr < 100 * n_jobs:
  557. chunksize = int(len_itr / n_jobs) + 1
  558. else:
  559. chunksize = 100
  560. def init_worker(ged_env_toshare):
  561. global G_ged_env
  562. G_ged_env = ged_env_toshare
  563. do_fun = partial(_compute_medoid_parallel, graph_ids)
  564. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self.__ged_env,))
  565. if self.__print_to_stdout == 2:
  566. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  567. desc='Computing medoid', file=sys.stdout)
  568. else:
  569. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  570. for i, dis in iterator:
  571. sum_of_distances_list[i] = dis
  572. pool.close()
  573. pool.join()
  574. medoid_id = np.argmin(sum_of_distances_list)
  575. best_sum_of_distances = sum_of_distances_list[medoid_id]
  576. initial_medians.append(self.__ged_env.get_nx_graph(medoid_id, True, True, False)) # @todo
  577. else:
  578. # Print information about current iteration.
  579. if self.__print_to_stdout == 2:
  580. progress = tqdm(desc='Computing medoid', total=len(graph_ids), file=sys.stdout)
  581. medoid_id = graph_ids[0]
  582. best_sum_of_distances = np.inf
  583. for g_id in graph_ids:
  584. if timer.expired():
  585. self.__state = AlgorithmState.CALLED
  586. break
  587. sum_of_distances = 0
  588. for h_id in graph_ids:
  589. self.__ged_env.run_method(g_id, h_id)
  590. sum_of_distances += self.__ged_env.get_upper_bound(g_id, h_id)
  591. if sum_of_distances < best_sum_of_distances:
  592. best_sum_of_distances = sum_of_distances
  593. medoid_id = g_id
  594. # Print information about current iteration.
  595. if self.__print_to_stdout == 2:
  596. progress.update(1)
  597. initial_medians.append(self.__ged_env.get_nx_graph(medoid_id, True, True, False)) # @todo
  598. # Print information about current iteration.
  599. if self.__print_to_stdout == 2:
  600. print('\n')
  601. def __compute_init_node_maps(self, graph_ids, gen_median_id):
  602. # Compute node maps and sum of distances for initial median.
  603. if self.__parallel:
  604. # @todo: notice when parallel self.__ged_env is not modified.
  605. self.__sum_of_distances = 0
  606. self.__node_maps_from_median.clear()
  607. sum_of_distances_list = [0] * len(graph_ids)
  608. len_itr = len(graph_ids)
  609. itr = graph_ids
  610. n_jobs = multiprocessing.cpu_count()
  611. if len_itr < 100 * n_jobs:
  612. chunksize = int(len_itr / n_jobs) + 1
  613. else:
  614. chunksize = 100
  615. def init_worker(ged_env_toshare):
  616. global G_ged_env
  617. G_ged_env = ged_env_toshare
  618. do_fun = partial(_compute_init_node_maps_parallel, gen_median_id)
  619. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self.__ged_env,))
  620. if self.__print_to_stdout == 2:
  621. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  622. desc='Computing initial node maps', file=sys.stdout)
  623. else:
  624. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  625. for g_id, sod, node_maps in iterator:
  626. sum_of_distances_list[g_id] = sod
  627. self.__node_maps_from_median[g_id] = node_maps
  628. pool.close()
  629. pool.join()
  630. self.__sum_of_distances = np.sum(sum_of_distances_list)
  631. # xxx = self.__node_maps_from_median
  632. else:
  633. # Print information about current iteration.
  634. if self.__print_to_stdout == 2:
  635. progress = tqdm(desc='Computing initial node maps', total=len(graph_ids), file=sys.stdout)
  636. self.__sum_of_distances = 0
  637. self.__node_maps_from_median.clear()
  638. for graph_id in graph_ids:
  639. self.__ged_env.run_method(gen_median_id, graph_id)
  640. self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(gen_median_id, graph_id)
  641. # print(self.__node_maps_from_median[graph_id])
  642. self.__sum_of_distances += self.__node_maps_from_median[graph_id].induced_cost()
  643. # print(self.__sum_of_distances)
  644. # Print information about current iteration.
  645. if self.__print_to_stdout == 2:
  646. progress.update(1)
  647. # Print information about current iteration.
  648. if self.__print_to_stdout == 2:
  649. print('\n')
  650. def __termination_criterion_met(self, converged, timer, itr, itrs_without_update):
  651. if timer.expired() or (itr >= self.__max_itrs if self.__max_itrs >= 0 else False):
  652. if self.__state == AlgorithmState.TERMINATED:
  653. self.__state = AlgorithmState.INITIALIZED
  654. return True
  655. return converged or (itrs_without_update > self.__max_itrs_without_update if self.__max_itrs_without_update >= 0 else False)
  656. def __update_median(self, graphs, median):
  657. # Print information about current iteration.
  658. if self.__print_to_stdout == 2:
  659. print('Updating median: ', end='')
  660. # Store copy of the old median.
  661. old_median = median.copy() # @todo: this is just a shallow copy.
  662. # Update the node labels.
  663. if self.__labeled_nodes:
  664. self.__update_node_labels(graphs, median)
  665. # Update the edges and their labels.
  666. self.__update_edges(graphs, median)
  667. # Print information about current iteration.
  668. if self.__print_to_stdout == 2:
  669. print('done.')
  670. return not self.__are_graphs_equal(median, old_median)
  671. def __update_node_labels(self, graphs, median):
  672. # print('----------------------------')
  673. # Print information about current iteration.
  674. if self.__print_to_stdout == 2:
  675. print('nodes ... ', end='')
  676. # Iterate through all nodes of the median.
  677. for i in range(0, nx.number_of_nodes(median)):
  678. # print('i: ', i)
  679. # Collect the labels of the substituted nodes.
  680. node_labels = []
  681. for graph_id, graph in graphs.items():
  682. # print('graph_id: ', graph_id)
  683. # print(self.__node_maps_from_median[graph_id])
  684. # print(self.__node_maps_from_median[graph_id].get_forward_map(), self.__node_maps_from_median[graph_id].get_backward_map())
  685. k = self.__node_maps_from_median[graph_id].image(i)
  686. # print('k: ', k)
  687. if k != np.inf:
  688. node_labels.append(graph.nodes[k])
  689. # Compute the median label and update the median.
  690. if len(node_labels) > 0:
  691. # median_label = self.__ged_env.get_median_node_label(node_labels)
  692. median_label = self.__get_median_node_label(node_labels)
  693. if self.__ged_env.get_node_rel_cost(median.nodes[i], median_label) > self.__epsilon:
  694. nx.set_node_attributes(median, {i: median_label})
  695. def __update_edges(self, graphs, median):
  696. # Print information about current iteration.
  697. if self.__print_to_stdout == 2:
  698. print('edges ... ', end='')
  699. # # Clear the adjacency lists of the median and reset number of edges to 0.
  700. # median_edges = list(median.edges)
  701. # for (head, tail) in median_edges:
  702. # median.remove_edge(head, tail)
  703. # @todo: what if edge is not labeled?
  704. # Iterate through all possible edges (i,j) of the median.
  705. for i in range(0, nx.number_of_nodes(median)):
  706. for j in range(i + 1, nx.number_of_nodes(median)):
  707. # Collect the labels of the edges to which (i,j) is mapped by the node maps.
  708. edge_labels = []
  709. for graph_id, graph in graphs.items():
  710. k = self.__node_maps_from_median[graph_id].image(i)
  711. l = self.__node_maps_from_median[graph_id].image(j)
  712. if k != np.inf and l != np.inf:
  713. if graph.has_edge(k, l):
  714. edge_labels.append(graph.edges[(k, l)])
  715. # Compute the median edge label and the overall edge relabeling cost.
  716. rel_cost = 0
  717. median_label = self.__ged_env.get_edge_label(1)
  718. if median.has_edge(i, j):
  719. median_label = median.edges[(i, j)]
  720. if self.__labeled_edges and len(edge_labels) > 0:
  721. new_median_label = self.__get_median_edge_label(edge_labels)
  722. if self.__ged_env.get_edge_rel_cost(median_label, new_median_label) > self.__epsilon:
  723. median_label = new_median_label
  724. for edge_label in edge_labels:
  725. rel_cost += self.__ged_env.get_edge_rel_cost(median_label, edge_label)
  726. # Update the median.
  727. if median.has_edge(i, j):
  728. median.remove_edge(i, j)
  729. if rel_cost < (self.__edge_ins_cost + self.__edge_del_cost) * len(edge_labels) - self.__edge_del_cost * len(graphs):
  730. median.add_edge(i, j, **median_label)
  731. # else:
  732. # if median.has_edge(i, j):
  733. # median.remove_edge(i, j)
  734. def __update_node_maps(self):
  735. # Update the node maps.
  736. if self.__parallel:
  737. # @todo: notice when parallel self.__ged_env is not modified.
  738. node_maps_were_modified = False
  739. # xxx = self.__node_maps_from_median.copy()
  740. len_itr = len(self.__node_maps_from_median)
  741. itr = [item for item in self.__node_maps_from_median.items()]
  742. n_jobs = multiprocessing.cpu_count()
  743. if len_itr < 100 * n_jobs:
  744. chunksize = int(len_itr / n_jobs) + 1
  745. else:
  746. chunksize = 100
  747. def init_worker(ged_env_toshare):
  748. global G_ged_env
  749. G_ged_env = ged_env_toshare
  750. do_fun = partial(_update_node_maps_parallel, self.__median_id, self.__epsilon)
  751. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(self.__ged_env,))
  752. if self.__print_to_stdout == 2:
  753. iterator = tqdm(pool.imap_unordered(do_fun, itr, chunksize),
  754. desc='Updating node maps', file=sys.stdout)
  755. else:
  756. iterator = pool.imap_unordered(do_fun, itr, chunksize)
  757. for g_id, node_map, nm_modified in iterator:
  758. self.__node_maps_from_median[g_id] = node_map
  759. if nm_modified:
  760. node_maps_were_modified = True
  761. pool.close()
  762. pool.join()
  763. # yyy = self.__node_maps_from_median.copy()
  764. else:
  765. # Print information about current iteration.
  766. if self.__print_to_stdout == 2:
  767. progress = tqdm(desc='Updating node maps', total=len(self.__node_maps_from_median), file=sys.stdout)
  768. node_maps_were_modified = False
  769. for graph_id, node_map in self.__node_maps_from_median.items():
  770. self.__ged_env.run_method(self.__median_id, graph_id)
  771. if self.__ged_env.get_upper_bound(self.__median_id, graph_id) < node_map.induced_cost() - self.__epsilon:
  772. # xxx = self.__node_maps_from_median[graph_id]
  773. self.__node_maps_from_median[graph_id] = self.__ged_env.get_node_map(self.__median_id, graph_id)
  774. # yyy = self.__node_maps_from_median[graph_id]
  775. node_maps_were_modified = True
  776. # Print information about current iteration.
  777. if self.__print_to_stdout == 2:
  778. progress.update(1)
  779. # Print information about current iteration.
  780. if self.__print_to_stdout == 2:
  781. print('\n')
  782. # Return true if the node maps were modified.
  783. return node_maps_were_modified
  784. def __decrease_order(self, graphs, median):
  785. # Print information about current iteration
  786. if self.__print_to_stdout == 2:
  787. print('Trying to decrease order: ... ', end='')
  788. if nx.number_of_nodes(median) <= 1:
  789. if self.__print_to_stdout == 2:
  790. print('median graph has only 1 node, skip decrease.')
  791. return False
  792. # Initialize ID of the node that is to be deleted.
  793. id_deleted_node = [None] # @todo: or np.inf
  794. decreased_order = False
  795. # Decrease the order as long as the best deletion delta is negative.
  796. while self.__compute_best_deletion_delta(graphs, median, id_deleted_node) < -self.__epsilon:
  797. decreased_order = True
  798. self.__delete_node_from_median(id_deleted_node[0], median)
  799. if nx.number_of_nodes(median) <= 1:
  800. if self.__print_to_stdout == 2:
  801. print('decrease stopped because median graph remains only 1 node. ', end='')
  802. break
  803. # Print information about current iteration.
  804. if self.__print_to_stdout == 2:
  805. print('done.')
  806. # Return true iff the order was decreased.
  807. return decreased_order
  808. def __compute_best_deletion_delta(self, graphs, median, id_deleted_node):
  809. best_delta = 0.0
  810. # Determine node that should be deleted (if any).
  811. for i in range(0, nx.number_of_nodes(median)):
  812. # Compute cost delta.
  813. delta = 0.0
  814. for graph_id, graph in graphs.items():
  815. k = self.__node_maps_from_median[graph_id].image(i)
  816. if k == np.inf:
  817. delta -= self.__node_del_cost
  818. else:
  819. delta += self.__node_ins_cost - self.__ged_env.get_node_rel_cost(median.nodes[i], graph.nodes[k])
  820. for j, j_label in median[i].items():
  821. l = self.__node_maps_from_median[graph_id].image(j)
  822. if k == np.inf or l == np.inf:
  823. delta -= self.__edge_del_cost
  824. elif not graph.has_edge(k, l):
  825. delta -= self.__edge_del_cost
  826. else:
  827. delta += self.__edge_ins_cost - self.__ged_env.get_edge_rel_cost(j_label, graph.edges[(k, l)])
  828. # Update best deletion delta.
  829. if delta < best_delta - self.__epsilon:
  830. best_delta = delta
  831. id_deleted_node[0] = i
  832. # id_deleted_node[0] = 3 # @todo:
  833. return best_delta
  834. def __delete_node_from_median(self, id_deleted_node, median):
  835. # Update the median.
  836. mapping = {}
  837. for i in range(0, nx.number_of_nodes(median)):
  838. if i != id_deleted_node:
  839. new_i = (i if i < id_deleted_node else (i - 1))
  840. mapping[i] = new_i
  841. median.remove_node(id_deleted_node)
  842. nx.relabel_nodes(median, mapping, copy=False)
  843. # Update the node maps.
  844. # xxx = self.__node_maps_from_median
  845. for key, node_map in self.__node_maps_from_median.items():
  846. new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes())
  847. is_unassigned_target_node = [True] * node_map.num_target_nodes()
  848. for i in range(0, nx.number_of_nodes(median) + 1):
  849. if i != id_deleted_node:
  850. new_i = (i if i < id_deleted_node else (i - 1))
  851. k = node_map.image(i)
  852. new_node_map.add_assignment(new_i, k)
  853. if k != np.inf:
  854. is_unassigned_target_node[k] = False
  855. for k in range(0, node_map.num_target_nodes()):
  856. if is_unassigned_target_node[k]:
  857. new_node_map.add_assignment(np.inf, k)
  858. # print(self.__node_maps_from_median[key].get_forward_map(), self.__node_maps_from_median[key].get_backward_map())
  859. # print(new_node_map.get_forward_map(), new_node_map.get_backward_map())
  860. self.__node_maps_from_median[key] = new_node_map
  861. # Increase overall number of decreases.
  862. self.__num_decrease_order += 1
  863. def __increase_order(self, graphs, median):
  864. # Print information about current iteration.
  865. if self.__print_to_stdout == 2:
  866. print('Trying to increase order: ... ', end='')
  867. # Initialize the best configuration and the best label of the node that is to be inserted.
  868. best_config = {}
  869. best_label = self.__ged_env.get_node_label(1)
  870. increased_order = False
  871. # Increase the order as long as the best insertion delta is negative.
  872. while self.__compute_best_insertion_delta(graphs, best_config, best_label) < - self.__epsilon:
  873. increased_order = True
  874. self.__add_node_to_median(best_config, best_label, median)
  875. # Print information about current iteration.
  876. if self.__print_to_stdout == 2:
  877. print('done.')
  878. # Return true iff the order was increased.
  879. return increased_order
  880. def __compute_best_insertion_delta(self, graphs, best_config, best_label):
  881. # Construct sets of inserted nodes.
  882. no_inserted_node = True
  883. inserted_nodes = {}
  884. for graph_id, graph in graphs.items():
  885. inserted_nodes[graph_id] = []
  886. best_config[graph_id] = np.inf
  887. for k in range(nx.number_of_nodes(graph)):
  888. if self.__node_maps_from_median[graph_id].pre_image(k) == np.inf:
  889. no_inserted_node = False
  890. inserted_nodes[graph_id].append((k, tuple(item for item in graph.nodes[k].items()))) # @todo: can order of label names be garantteed?
  891. # Return 0.0 if no node is inserted in any of the graphs.
  892. if no_inserted_node:
  893. return 0.0
  894. # Compute insertion configuration, label, and delta.
  895. best_delta = 0.0 # @todo
  896. if len(self.__label_names['node_labels']) == 0 and len(self.__label_names['node_attrs']) == 0: # @todo
  897. best_delta = self.__compute_insertion_delta_unlabeled(inserted_nodes, best_config, best_label)
  898. elif len(self.__label_names['node_labels']) > 0: # self.__constant_node_costs:
  899. best_delta = self.__compute_insertion_delta_constant(inserted_nodes, best_config, best_label)
  900. else:
  901. best_delta = self.__compute_insertion_delta_generic(inserted_nodes, best_config, best_label)
  902. # Return the best delta.
  903. return best_delta
  904. def __compute_insertion_delta_unlabeled(self, inserted_nodes, best_config, best_label): # @todo: go through and test.
  905. # Construct the nest configuration and compute its insertion delta.
  906. best_delta = 0.0
  907. best_config.clear()
  908. for graph_id, node_set in inserted_nodes.items():
  909. if len(node_set) == 0:
  910. best_config[graph_id] = np.inf
  911. best_delta += self.__node_del_cost
  912. else:
  913. best_config[graph_id] = node_set[0][0]
  914. best_delta -= self.__node_ins_cost
  915. # Return the best insertion delta.
  916. return best_delta
  917. def __compute_insertion_delta_constant(self, inserted_nodes, best_config, best_label):
  918. # Construct histogram and inverse label maps.
  919. hist = {}
  920. inverse_label_maps = {}
  921. for graph_id, node_set in inserted_nodes.items():
  922. inverse_label_maps[graph_id] = {}
  923. for node in node_set:
  924. k = node[0]
  925. label = node[1]
  926. if label not in inverse_label_maps[graph_id]:
  927. inverse_label_maps[graph_id][label] = k
  928. if label not in hist:
  929. hist[label] = 1
  930. else:
  931. hist[label] += 1
  932. # Determine the best label.
  933. best_count = 0
  934. for key, val in hist.items():
  935. if val > best_count:
  936. best_count = val
  937. best_label_tuple = key
  938. # get best label.
  939. best_label.clear()
  940. for key, val in best_label_tuple:
  941. best_label[key] = val
  942. # Construct the best configuration and compute its insertion delta.
  943. best_config.clear()
  944. best_delta = 0.0
  945. node_rel_cost = self.__ged_env.get_node_rel_cost(self.__ged_env.get_node_label(1), self.__ged_env.get_node_label(2))
  946. triangle_ineq_holds = (node_rel_cost <= self.__node_del_cost + self.__node_ins_cost)
  947. for graph_id, _ in inserted_nodes.items():
  948. if best_label_tuple in inverse_label_maps[graph_id]:
  949. best_config[graph_id] = inverse_label_maps[graph_id][best_label_tuple]
  950. best_delta -= self.__node_ins_cost
  951. elif triangle_ineq_holds and not len(inserted_nodes[graph_id]) == 0:
  952. best_config[graph_id] = inserted_nodes[graph_id][0][0]
  953. best_delta += node_rel_cost - self.__node_ins_cost
  954. else:
  955. best_config[graph_id] = np.inf
  956. best_delta += self.__node_del_cost
  957. # Return the best insertion delta.
  958. return best_delta
  959. def __compute_insertion_delta_generic(self, inserted_nodes, best_config, best_label):
  960. # Collect all node labels of inserted nodes.
  961. node_labels = []
  962. for _, node_set in inserted_nodes.items():
  963. for node in node_set:
  964. node_labels.append(node[1])
  965. # Compute node label medians that serve as initial solutions for block gradient descent.
  966. initial_node_labels = []
  967. self.__compute_initial_node_labels(node_labels, initial_node_labels)
  968. # Determine best insertion configuration, label, and delta via parallel block gradient descent from all initial node labels.
  969. best_delta = 0.0
  970. for node_label in initial_node_labels:
  971. # Construct local configuration.
  972. config = {}
  973. for graph_id, _ in inserted_nodes.items():
  974. config[graph_id] = tuple((np.inf, tuple(item for item in self.__ged_env.get_node_label(1).items())))
  975. # Run block gradient descent.
  976. converged = False
  977. itr = 0
  978. while not self.__insertion_termination_criterion_met(converged, itr):
  979. converged = not self.__update_config(node_label, inserted_nodes, config, node_labels)
  980. node_label_dict = dict(node_label)
  981. converged = converged and (not self.__update_node_label([dict(item) for item in node_labels], node_label_dict)) # @todo: the dict is tupled again in the function, can be better.
  982. node_label = tuple(item for item in node_label_dict.items()) # @todo: watch out: initial_node_labels[i] is not modified here.
  983. itr += 1
  984. # Compute insertion delta of converged solution.
  985. delta = 0.0
  986. for _, node in config.items():
  987. if node[0] == np.inf:
  988. delta += self.__node_del_cost
  989. else:
  990. delta += self.__ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self.__node_ins_cost
  991. # Update best delta and global configuration if improvement has been found.
  992. if delta < best_delta - self.__epsilon:
  993. best_delta = delta
  994. best_label.clear()
  995. for key, val in node_label:
  996. best_label[key] = val
  997. best_config.clear()
  998. for graph_id, val in config.items():
  999. best_config[graph_id] = val[0]
  1000. # Return the best delta.
  1001. return best_delta
  1002. def __compute_initial_node_labels(self, node_labels, median_labels):
  1003. median_labels.clear()
  1004. if self.__use_real_randomness: # @todo: may not work if parallelized.
  1005. rng = np.random.randint(0, high=2**32 - 1, size=1)
  1006. urng = np.random.RandomState(seed=rng[0])
  1007. else:
  1008. urng = np.random.RandomState(seed=self.__seed)
  1009. # Generate the initial node label medians.
  1010. if self.__init_type_increase_order == 'K-MEANS++':
  1011. # Use k-means++ heuristic to generate the initial node label medians.
  1012. already_selected = [False] * len(node_labels)
  1013. selected_label_id = urng.randint(low=0, high=len(node_labels), size=1)[0] # c++ test: 23
  1014. median_labels.append(node_labels[selected_label_id])
  1015. already_selected[selected_label_id] = True
  1016. # xxx = [41, 0, 18, 9, 6, 14, 21, 25, 33] for c++ test
  1017. # iii = 0 for c++ test
  1018. while len(median_labels) < self.__num_inits_increase_order:
  1019. weights = [np.inf] * len(node_labels)
  1020. for label_id in range(0, len(node_labels)):
  1021. if already_selected[label_id]:
  1022. weights[label_id] = 0
  1023. continue
  1024. for label in median_labels:
  1025. weights[label_id] = min(weights[label_id], self.__ged_env.get_node_rel_cost(dict(label), dict(node_labels[label_id])))
  1026. # get non-zero weights.
  1027. weights_p, idx_p = [], []
  1028. for i, w in enumerate(weights):
  1029. if w != 0:
  1030. weights_p.append(w)
  1031. idx_p.append(i)
  1032. if len(weights_p) > 0:
  1033. p = np.array(weights_p) / np.sum(weights_p)
  1034. selected_label_id = urng.choice(range(0, len(weights_p)), size=1, p=p)[0] # for c++ test: xxx[iii]
  1035. selected_label_id = idx_p[selected_label_id]
  1036. # iii += 1 for c++ test
  1037. median_labels.append(node_labels[selected_label_id])
  1038. already_selected[selected_label_id] = True
  1039. else: # skip the loop when all node_labels are selected. This happens when len(node_labels) <= self.__num_inits_increase_order.
  1040. break
  1041. else:
  1042. # Compute the initial node medians as the medians of randomly generated clusters of (roughly) equal size.
  1043. # @todo: go through and test.
  1044. shuffled_node_labels = [np.inf] * len(node_labels) #@todo: random?
  1045. # @todo: std::shuffle(shuffled_node_labels.begin(), shuffled_node_labels.end(), urng);?
  1046. cluster_size = len(node_labels) / self.__num_inits_increase_order
  1047. pos = 0.0
  1048. cluster = []
  1049. while len(median_labels) < self.__num_inits_increase_order - 1:
  1050. while pos < (len(median_labels) + 1) * cluster_size:
  1051. cluster.append(shuffled_node_labels[pos])
  1052. pos += 1
  1053. median_labels.append(self.__get_median_node_label(cluster))
  1054. cluster.clear()
  1055. while pos < len(shuffled_node_labels):
  1056. pos += 1
  1057. cluster.append(shuffled_node_labels[pos])
  1058. median_labels.append(self.__get_median_node_label(cluster))
  1059. cluster.clear()
  1060. # Run Lloyd's Algorithm.
  1061. converged = False
  1062. closest_median_ids = [np.inf] * len(node_labels)
  1063. clusters = [[] for _ in range(len(median_labels))]
  1064. itr = 1
  1065. while not self.__insertion_termination_criterion_met(converged, itr):
  1066. converged = not self.__update_clusters(node_labels, median_labels, closest_median_ids)
  1067. if not converged:
  1068. for cluster in clusters:
  1069. cluster.clear()
  1070. for label_id in range(0, len(node_labels)):
  1071. clusters[closest_median_ids[label_id]].append(node_labels[label_id])
  1072. for cluster_id in range(0, len(clusters)):
  1073. node_label = dict(median_labels[cluster_id])
  1074. self.__update_node_label([dict(item) for item in clusters[cluster_id]], node_label) # @todo: the dict is tupled again in the function, can be better.
  1075. median_labels[cluster_id] = tuple(item for item in node_label.items())
  1076. itr += 1
  1077. def __insertion_termination_criterion_met(self, converged, itr):
  1078. return converged or (itr >= self.__max_itrs_increase_order if self.__max_itrs_increase_order > 0 else False)
  1079. def __update_config(self, node_label, inserted_nodes, config, node_labels):
  1080. # Determine the best configuration.
  1081. config_modified = False
  1082. for graph_id, node_set in inserted_nodes.items():
  1083. best_assignment = config[graph_id]
  1084. best_cost = 0.0
  1085. if best_assignment[0] == np.inf:
  1086. best_cost = self.__node_del_cost
  1087. else:
  1088. best_cost = self.__ged_env.get_node_rel_cost(dict(node_label), dict(best_assignment[1])) - self.__node_ins_cost
  1089. for node in node_set:
  1090. cost = self.__ged_env.get_node_rel_cost(dict(node_label), dict(node[1])) - self.__node_ins_cost
  1091. if cost < best_cost - self.__epsilon:
  1092. best_cost = cost
  1093. best_assignment = node
  1094. config_modified = True
  1095. if self.__node_del_cost < best_cost - self.__epsilon:
  1096. best_cost = self.__node_del_cost
  1097. best_assignment = tuple((np.inf, best_assignment[1]))
  1098. config_modified = True
  1099. config[graph_id] = best_assignment
  1100. # Collect the node labels contained in the best configuration.
  1101. node_labels.clear()
  1102. for key, val in config.items():
  1103. if val[0] != np.inf:
  1104. node_labels.append(val[1])
  1105. # Return true if the configuration was modified.
  1106. return config_modified
  1107. def __update_node_label(self, node_labels, node_label):
  1108. if len(node_labels) == 0: # @todo: check if this is the correct solution. Especially after calling __update_config().
  1109. return False
  1110. new_node_label = self.__get_median_node_label(node_labels)
  1111. if self.__ged_env.get_node_rel_cost(new_node_label, node_label) > self.__epsilon:
  1112. node_label.clear()
  1113. for key, val in new_node_label.items():
  1114. node_label[key] = val
  1115. return True
  1116. return False
  1117. def __update_clusters(self, node_labels, median_labels, closest_median_ids):
  1118. # Determine the closest median for each node label.
  1119. clusters_modified = False
  1120. for label_id in range(0, len(node_labels)):
  1121. closest_median_id = np.inf
  1122. dist_to_closest_median = np.inf
  1123. for median_id in range(0, len(median_labels)):
  1124. dist_to_median = self.__ged_env.get_node_rel_cost(dict(median_labels[median_id]), dict(node_labels[label_id]))
  1125. if dist_to_median < dist_to_closest_median - self.__epsilon:
  1126. dist_to_closest_median = dist_to_median
  1127. closest_median_id = median_id
  1128. if closest_median_id != closest_median_ids[label_id]:
  1129. closest_median_ids[label_id] = closest_median_id
  1130. clusters_modified = True
  1131. # Return true if the clusters were modified.
  1132. return clusters_modified
  1133. def __add_node_to_median(self, best_config, best_label, median):
  1134. # Update the median.
  1135. nb_nodes_median = nx.number_of_nodes(median)
  1136. median.add_node(nb_nodes_median, **best_label)
  1137. # Update the node maps.
  1138. for graph_id, node_map in self.__node_maps_from_median.items():
  1139. node_map_as_rel = []
  1140. node_map.as_relation(node_map_as_rel)
  1141. new_node_map = NodeMap(nx.number_of_nodes(median), node_map.num_target_nodes())
  1142. for assignment in node_map_as_rel:
  1143. new_node_map.add_assignment(assignment[0], assignment[1])
  1144. new_node_map.add_assignment(nx.number_of_nodes(median) - 1, best_config[graph_id])
  1145. self.__node_maps_from_median[graph_id] = new_node_map
  1146. # Increase overall number of increases.
  1147. self.__num_increase_order += 1
  1148. def __are_graphs_equal(self, g1, g2):
  1149. """
  1150. Check if the two graphs are equal.
  1151. Parameters
  1152. ----------
  1153. g1 : NetworkX graph object
  1154. Graph 1 to be compared.
  1155. g2 : NetworkX graph object
  1156. Graph 2 to be compared.
  1157. Returns
  1158. -------
  1159. bool
  1160. True if the two graph are equal.
  1161. Notes
  1162. -----
  1163. This is not an identical check. Here the two graphs are equal if and only if their original_node_ids, nodes, all node labels, edges and all edge labels are equal. This function is specifically designed for class `MedianGraphEstimator` and should not be used elsewhere.
  1164. """
  1165. # check original node ids.
  1166. if not g1.graph['original_node_ids'] == g2.graph['original_node_ids']:
  1167. return False
  1168. # check nodes.
  1169. nlist1 = [n for n in g1.nodes(data=True)]
  1170. nlist2 = [n for n in g2.nodes(data=True)]
  1171. if not nlist1 == nlist2:
  1172. return False
  1173. # check edges.
  1174. elist1 = [n for n in g1.edges(data=True)]
  1175. elist2 = [n for n in g2.edges(data=True)]
  1176. if not elist1 == elist2:
  1177. return False
  1178. return True
  1179. def compute_my_cost(g, h, node_map):
  1180. cost = 0.0
  1181. for node in g.nodes:
  1182. cost += 0
  1183. def set_label_names(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  1184. self.__label_names = {'node_labels': node_labels, 'edge_labels': edge_labels,
  1185. 'node_attrs': node_attrs, 'edge_attrs': edge_attrs}
  1186. def __get_median_node_label(self, node_labels):
  1187. if len(self.__label_names['node_labels']) > 0:
  1188. return self.__get_median_label_symbolic(node_labels)
  1189. elif len(self.__label_names['node_attrs']) > 0:
  1190. return self.__get_median_label_nonsymbolic(node_labels)
  1191. else:
  1192. raise Exception('Node label names are not given.')
  1193. def __get_median_edge_label(self, edge_labels):
  1194. if len(self.__label_names['edge_labels']) > 0:
  1195. return self.__get_median_label_symbolic(edge_labels)
  1196. elif len(self.__label_names['edge_attrs']) > 0:
  1197. return self.__get_median_label_nonsymbolic(edge_labels)
  1198. else:
  1199. raise Exception('Edge label names are not given.')
  1200. def __get_median_label_symbolic(self, labels):
  1201. # Construct histogram.
  1202. hist = {}
  1203. for label in labels:
  1204. label = tuple([kv for kv in label.items()]) # @todo: this may be slow.
  1205. if label not in hist:
  1206. hist[label] = 1
  1207. else:
  1208. hist[label] += 1
  1209. # Return the label that appears most frequently.
  1210. best_count = 0
  1211. median_label = {}
  1212. for label, count in hist.items():
  1213. if count > best_count:
  1214. best_count = count
  1215. median_label = {kv[0]: kv[1] for kv in label}
  1216. return median_label
  1217. def __get_median_label_nonsymbolic(self, labels):
  1218. if len(labels) == 0:
  1219. return {} # @todo
  1220. else:
  1221. # Transform the labels into coordinates and compute mean label as initial solution.
  1222. labels_as_coords = []
  1223. sums = {}
  1224. for key, val in labels[0].items():
  1225. sums[key] = 0
  1226. for label in labels:
  1227. coords = {}
  1228. for key, val in label.items():
  1229. label_f = float(val)
  1230. sums[key] += label_f
  1231. coords[key] = label_f
  1232. labels_as_coords.append(coords)
  1233. median = {}
  1234. for key, val in sums.items():
  1235. median[key] = val / len(labels)
  1236. # Run main loop of Weiszfeld's Algorithm.
  1237. epsilon = 0.0001
  1238. delta = 1.0
  1239. num_itrs = 0
  1240. all_equal = False
  1241. while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)):
  1242. numerator = {}
  1243. for key, val in sums.items():
  1244. numerator[key] = 0
  1245. denominator = 0
  1246. for label_as_coord in labels_as_coords:
  1247. norm = 0
  1248. for key, val in label_as_coord.items():
  1249. norm += (val - median[key]) ** 2
  1250. norm = np.sqrt(norm)
  1251. if norm > 0:
  1252. for key, val in label_as_coord.items():
  1253. numerator[key] += val / norm
  1254. denominator += 1.0 / norm
  1255. if denominator == 0:
  1256. all_equal = True
  1257. else:
  1258. new_median = {}
  1259. delta = 0.0
  1260. for key, val in numerator.items():
  1261. this_median = val / denominator
  1262. new_median[key] = this_median
  1263. delta += np.abs(median[key] - this_median)
  1264. median = new_median
  1265. num_itrs += 1
  1266. # Transform the solution to strings and return it.
  1267. median_label = {}
  1268. for key, val in median.items():
  1269. median_label[key] = str(val)
  1270. return median_label
  1271. # def __get_median_edge_label_symbolic(self, edge_labels):
  1272. # pass
  1273. # def __get_median_edge_label_nonsymbolic(self, edge_labels):
  1274. # if len(edge_labels) == 0:
  1275. # return {}
  1276. # else:
  1277. # # Transform the labels into coordinates and compute mean label as initial solution.
  1278. # edge_labels_as_coords = []
  1279. # sums = {}
  1280. # for key, val in edge_labels[0].items():
  1281. # sums[key] = 0
  1282. # for edge_label in edge_labels:
  1283. # coords = {}
  1284. # for key, val in edge_label.items():
  1285. # label = float(val)
  1286. # sums[key] += label
  1287. # coords[key] = label
  1288. # edge_labels_as_coords.append(coords)
  1289. # median = {}
  1290. # for key, val in sums.items():
  1291. # median[key] = val / len(edge_labels)
  1292. #
  1293. # # Run main loop of Weiszfeld's Algorithm.
  1294. # epsilon = 0.0001
  1295. # delta = 1.0
  1296. # num_itrs = 0
  1297. # all_equal = False
  1298. # while ((delta > epsilon) and (num_itrs < 100) and (not all_equal)):
  1299. # numerator = {}
  1300. # for key, val in sums.items():
  1301. # numerator[key] = 0
  1302. # denominator = 0
  1303. # for edge_label_as_coord in edge_labels_as_coords:
  1304. # norm = 0
  1305. # for key, val in edge_label_as_coord.items():
  1306. # norm += (val - median[key]) ** 2
  1307. # norm += np.sqrt(norm)
  1308. # if norm > 0:
  1309. # for key, val in edge_label_as_coord.items():
  1310. # numerator[key] += val / norm
  1311. # denominator += 1.0 / norm
  1312. # if denominator == 0:
  1313. # all_equal = True
  1314. # else:
  1315. # new_median = {}
  1316. # delta = 0.0
  1317. # for key, val in numerator.items():
  1318. # this_median = val / denominator
  1319. # new_median[key] = this_median
  1320. # delta += np.abs(median[key] - this_median)
  1321. # median = new_median
  1322. #
  1323. # num_itrs += 1
  1324. #
  1325. # # Transform the solution to ged::GXLLabel and return it.
  1326. # median_label = {}
  1327. # for key, val in median.items():
  1328. # median_label[key] = str(val)
  1329. # return median_label
  1330. def _compute_medoid_parallel(graph_ids, itr):
  1331. g_id = itr[0]
  1332. i = itr[1]
  1333. # @todo: timer not considered here.
  1334. # if timer.expired():
  1335. # self.__state = AlgorithmState.CALLED
  1336. # break
  1337. sum_of_distances = 0
  1338. for h_id in graph_ids:
  1339. G_ged_env.run_method(g_id, h_id)
  1340. sum_of_distances += G_ged_env.get_upper_bound(g_id, h_id)
  1341. return i, sum_of_distances
  1342. def _compute_init_node_maps_parallel(gen_median_id, itr):
  1343. graph_id = itr
  1344. G_ged_env.run_method(gen_median_id, graph_id)
  1345. node_maps_from_median = G_ged_env.get_node_map(gen_median_id, graph_id)
  1346. # print(self.__node_maps_from_median[graph_id])
  1347. sum_of_distance = node_maps_from_median.induced_cost()
  1348. # print(self.__sum_of_distances)
  1349. return graph_id, sum_of_distance, node_maps_from_median
  1350. def _update_node_maps_parallel(median_id, epsilon, itr):
  1351. graph_id = itr[0]
  1352. node_map = itr[1]
  1353. node_maps_were_modified = False
  1354. G_ged_env.run_method(median_id, graph_id)
  1355. if G_ged_env.get_upper_bound(median_id, graph_id) < node_map.induced_cost() - epsilon:
  1356. node_map = G_ged_env.get_node_map(median_id, graph_id)
  1357. node_maps_were_modified = True
  1358. return graph_id, node_map, node_maps_were_modified

A Python package for graph kernels, graph edit distances and graph pre-image problem.